(保姆级图文详解)ubuntu下深度学习cuda+cudnn+anaconda3环境配置(看这一篇就够了)

本文详细介绍了在Ubuntu18.04系统中安装NVIDIA显卡驱动、CUDA12.1、CUDNN8.9.0以及Anaconda32023.07的步骤,包括驱动验证、环境设置和常用conda命令的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一.安装显卡驱动

1.查看是否安装成功:

二.安装cuda

1.验证

三.安装cudnn

1.查看cudnn版本

四.安装anaconda3

下面介绍一些常用的conda命令

创建环境

激活与退出环境

查看环境列表

删除环境

 获取当前环境拥有的包


不废话,直接开始,我的系统是18.04的,显卡4060

一.安装显卡驱动

打开软件与更新,在附加与驱动里选择一个安装,点击应用更改

打开终端,输入:

nvidia-smi

1.查看是否安装成功:

出现这个便是安装成功

二.安装cuda

cuda版本的选择原则就是别超过你安装驱动支持的最高版本,在我这里就是12.1

cuda各版本下载地址

我选择下载12.1,那么以12.1为例

按照版本选下来,最后选择runfile,然后打开终端,复制下面第一句指令,回车开始下载

 下载完可以看到home里有一个可执行文件

打开终端,执行第二句,要等待一会,

选择continue,确定,

在最下面输入accept

把第一个选项一定回车,最后install

出现这个就是安装完了,然后修改环境变量

sudo gedit .bashrc

在出现的文本的最下方添加这三行,对应自己的版本哈

export LD_LIBRARY_PATH=/usr/local/cuda-12.1/lib64:/usr/local/cuda/extras/CPUTI/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda-12.1/bin
export PATH=$CUDA_HOME:$LD_LIBRARY_PATH:$PATH

然后source一下使环境变量生效

source ~/.bashrc

1.验证

最后在终端输入验证一下

nvcc -V

出现这个就是安装成功啦

三.安装cudnn

cudnn下载网址

已经与cuda版本对应好了,这里我选择8.9.0版本for cuda 12.x的

下载cudnn需要用到英伟达账号,这里选择下载第二个linux x86 tar版本的,等待即可。

下好后我们把包放在桌面,然后解压

  cudnn是一个基于cuda的库,不用安装,下载后的压缩包解压后是一些头文件,lib和dll文件。只需把头文件复制进/usr/local/cuda/include/,共享库复制进/usr/local/cuda/lib64/

在调用的时候可以找到就行

在这里因为笔者之前找不到cudnn_version.h,所以程序有报错,这次直接sudo cp 全部

打开cudnn解压好的文件夹,cd进include,然后

对lib也作同一处理

再去usr里找一下

发现有了,然后给它们增加权限

sudo chmod a+r /usr/local/cuda/include/cudnn.h 
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

1.查看cudnn版本

新开终端输入

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

 

可以看到安装成功了

四.安装anaconda3

在清华镜像站下载想要的anaconda3版本

清华anaconda3镜像下载

这里以2023-07-02版本举例,还是要下载linux x86版本的

在它所在位置打开终端

sh Anaconda3-2023.07-2-Linux-x86_64.sh 

一直按回车,直到这里,输入yes

这里回车即可,默认路径

询问是否要初始化并添加到环境变量,选择yes

然后这样就是安装成功

新开一个终端

发现有了base环境,结束啦

下面介绍一些常用的conda命令

创建环境

conda create -n 环境名 python=x.x

激活与退出环境

conda activate 环境名
conda deactivate

查看环境列表

conda env list

删除环境

conda remove -n 环境名 --all

 获取当前环境拥有的包

conda list

具体部署某个模型之后再写了

要在Ubuntu上配置CUDA,您可以按照以下步骤进行操作: 1. 首先,确保您的计算机上有适用的GPU。您可以使用以下命令来检查: nvidia-smi 2. 然后,您需要下载适用于您的Ubuntu版本的CUDA安装程序。例如,如果您的Ubuntu版本是20.04,您可以选择Linux -> x86_64 -> Ubuntu -> 20.04 -> runfile(local)。如果您是新手,也可以选择deb(local)。 [2] 3. 下载并安装CUDA安装程序。您可以使用以下命令: sudo sh cuda_11.7.0_123456_linux.run 4. 安装过程中,您可能需要接受许可协议并选择安装路径。 5. 安装完成后,您需要下载并安装对应版本的cuDNNCUDA深度神经网络库)。您可以从NVIDIA开发者网站上下载对应版本的cuDNN。 6. 解压下载的cuDNN文件并将相关文件复制到CUDA的安装目录中。例如,使用以下命令: sudo cp cudnn-linux-x86_64-8.4.0.27_cuda11.6-archive/include/cudnn*.h /usr/local/cuda/include sudo cp -p cudnn-linux-x86_64-8.4.0.27_cuda11.6-archive/lib/libcudnn* /usr/local/cuda/lib64 sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* [3] 7. 最后,您需要将CUDA添加到系统路径中。您可以在.bashrc文件中添加以下行: export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH 通过按照以上步骤配置,您的Ubuntu系统就可以使用CUDA了。请注意,这只是一个基本的配置过程,具体步骤可能因您的系统和CUDA版本而略有不同。建议初学者从命令行开始入手,以更好地了解和使用Linux系统。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [最新CUDA环境配置教程(ubuntu 20.04 + cuda 11.7 + cuDNN 8.4)](https://blog.csdn.net/kunhe0512/article/details/125061911)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值