先看一个场景:如何判断一个数是否在40亿个整数中?
题目:给一台普通PC,2G内存。我有40亿个整数,再给一个新的整数,我需要判断新的整数是否在40亿个整数中,你会怎么做?
分析:
40亿个int占(40亿*4字节)/1024/1024/1024 大概为16G左右,很明显内存只有2G,放不下,因此不可能将这40亿数据放到内存中计算。要快速的解决这个问题最好的方案就是将数据搁内存了,所以现在的问题就在如何在2G内存空间以内存储着40亿整数。
判断一个数是否存在,其实只有两个状态,存在或者不存在,可以用一个位代表。这样我就申请40亿个位就好了,新的数转换成一个位,然后判断一下这个位是0还是1就行了。其实你可以想想,32位int的范围,总共就是2的32次方,大概42亿多点。所以你可以申请2的32次方个位。算一下需要多少内存呢?2的32次方个位,相当于2的29次方个字节,哇,才500MB,真是节省了不少内存呢。
BitMap思想:
一个byte是占8个bit,如果每一个bit的值就是有或者没有,也就是二进制的0或者1,如果用bit的位置代表数组值有还是没有,那么0代表该数值没有出现过,1代表该数组值出现过。不也能描述数据了吗?如下图:
再看代码之前,我们先搞清楚一个问题,一个数怎么快速定位它的索引号,也就是说搞清楚byte[index]的index是多少,position是哪一位。举个例子吧,例如add(14)。14已经超出byte[0]的映射范围,在byte[1]范围之类。那么怎么快速定位它的索引呢。如果找到它的索引号,又怎么定位它的位置呢。Index(N)代表N的索引号,Position(N)代表N的所在的位置号。
Index(N) = N/8 = N >> 3;
Position(N) = N%8 = N & 0x07;
基于上面的分析,我们写一个简单的BitMap的算法如下:
package bitmap;
public class BitMap {
//保存数据的
private byte[] bits;
//能够存储多少数据
private int capacity;
public BitMap(int capacity){
this.capacity = capacity;
//1bit能存储8个数据,那么capacity数据需要多少个bit呢,capacity/8+1,右移3位相当于除以8
bits = new byte[(capacity >>3 )+1];
}
public void add(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3;
// num%8得到在byte[index]的位置
int position = num & 0x07;
//将1左移position后,那个位置自然就是1,然后和以前的数据做|,这样,那个位置就替换成1了。
bits[arrayIndex] |= 1 << position;
}
public boolean contain(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3;
// num%8得到在byte[index]的位置
int position = num & 0x07;
//将1左移position后,那个位置自然就是1,然后和以前的数据做&,判断是否为0即可
return (bits[arrayIndex] & (1 << position)) !=0;
}
public void clear(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3;
// num%8得到在byte[index]的位置
int position = num & 0x07;
//将1左移position后,那个位置自然就是1,然后对取反,再与当前值做&,即可清除当前的位置了.
bits[arrayIndex] &= ~(1 << position);
}
public static void main(String[] args) {
BitMap bitmap = new BitMap(100);
bitmap.add(7);
System.out.println("插入7成功");
boolean isexsit = bitmap.contain(7);
System.out.println("7是否存在:"+isexsit);
bitmap.clear(7);
isexsit = bitmap.contain(7);
System.out.println("7是否存在:"+isexsit);
}
}