yolov7目标追踪:基于自定义数据集完成检测

### StrongSort 的实现与教程 #### 什么是 StrongSort? StrongSort 是一种基于深度学习目标跟踪算法,它结合了 SORT (Simple Online and Realtime Tracking) 和 DeepSORT 的优点。通过引入 Re-ID(Re-Identification)机制,它可以更好地处理目标遮挡和长时间丢失的情况[^1]。 #### StrongSort 的核心原理 1. **检测阶段** 使用 YOLOv5 或其他目标检测器提取每一帧中的目标边界框。 2. **特征提取** 利用深度学习模型提取目标的外观特征向量,这些特征用于计算不同目标之间的相似度[^2]。 3. **数据关联** 借助匈牙利算法或 Kalman Filter 对当前帧中的目标与历史轨迹进行匹配。如果无法找到匹配项,则创建新的轨迹;对于长期未更新的轨迹则标记为删除状态[^3]。 4. **重识别(Re-ID)** 当两个目标的距离较远或者存在遮挡时,仅依靠 IoU 可能不足以完成准确的数据关联。此时会利用 Re-ID 特征来辅助判断是否属于同一对象[^4]。 #### 实现教程概览 以下是关于如何实现 StrongSort 的一些指导: ##### 安装依赖库 首先需要安装必要的 Python 库以及预训练模型权重文件: ```bash pip install numpy scipy filterpy torch torchvision opencv-python-headless git clone https://github.com/mikel-brostrom/Yolov5_StrongSORT_OSNet.git cd Yolov5_StrongSORT_OSNet/ pip install -r requirements.txt ``` ##### 下载预训练模型 下载官方提供的 OSNet 预训练模型并放置于指定路径下以便加载使用: ```bash wget http://ml.cs.tsinghua.edu.cn/~imc/OSNet/osnet_x0_25_msmt17.pth.tar.gz mv osnet_x0_25_msmt17.pth.tar.gz weights/ ``` ##### 运行示例脚本 运行测试代码以验证环境配置无误,并观察实际效果: ```python from yolov5.utils.google_utils import attempt_download attempt_download('yolov5s.pt') # Download pre-trained model if not exist !python track.py --source inference/images/person.jpg --weights yolov5s.pt --strong-sort-weights strong_sort_weights/osnet_x0_25_msmt17.pth.tar.gz --save-txt --save-vid ``` 以上命令将会读取输入图像 `person.jpg` 并输出带有标注信息的新版本视频文件。 #### Fuxian 跟踪算法简介 Fuxian 跟踪算法是一种改进型多目标追踪方法,在传统卡尔曼滤波基础上增加了更多约束条件,提高了复杂场景下的鲁棒性和精确率[^5]。具体来说,该方案综合考虑了几何位置关系、运动趋势预测等多个维度的信息来进行最终决策。 --- ###
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖墩会武术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值