用 Extract 命令精确选取物体

作者:John Huang        来源:pconline

Extract 命令是 Photoshop 新增的功能之一,我们可以利用它把复杂的物体与它所在的背景分离,哪怕只是一根头发丝。这里是一只松鼠的例子——我们希望能改变图片的背景,但同时必须保留松鼠身体周围的绒毛 

1 打开松鼠的文件,如果你没有,可以在左图上点击鼠标右键,选择“图片另存为...”。

2 选择菜单 Image - Extract ,这时会有一个 Extract 窗口出现。

3 选择下图所示的工具选择恰当的 brush size,描绘出松鼠的轮廊,有必要的话可以使用 Zoom 工具放大视图,按下Alt的同时使用 Zoom 工具可以使视图缩小。

3 使用 工具 在松鼠上单击,整个松鼠被蓝色填充。

4 按下 Preview 工具可以预览效果,如果不满意的话,可以使用 Eraser 等工具修改。

5 这是完成后的效果,原来的背景被删去,你可以把它换成任何你喜欢的背景。

 

### 使用 IWR1843 毫米波雷达数据创建 SLAM 地图 毫米波雷达因其高精度的距离测量能力和较强的穿透能力,在复杂环境下具有独特优势。IWR1843 是一款适用于短距离传感的毫米波传感器,能够提供目标的速度、角度以及强度信息。基于这些特性,可以将其用于构建同步定位与建图(SLAM)系统。 #### 1. 数据预处理 在使用 IWR1843 的原始数据之前,需对其进行必要的预处理操作。该设备通过调频连续波(FMCW)技术获取目标的距离和速度信息,并以二维傅里叶变换的形式提取特征点云数据。为了提高后续算法的效果,应执行以下步骤: - **去噪**:去除噪声干扰信号,保留有效反射回波[^2]。 - **聚类分析**:将检测到的目标按照空间分布划分为不同的簇群,便于区分静态障碍物和动态物体[^3]。 #### 2. 特征提取 对于 SLAM 应用而言,从毫米波雷达返回的数据集中提取稳定可靠的地标是非常重要的一步。考虑到毫米波雷达的特点,可以选择如下策略来进行特征选取: - 利用目标的角度分辨率特性识别固定场景中的显著结构作为自然路标; - 或者采用人工设置的方式部署一些易于被探测器捕捉的小型反光板充当辅助标记点位[^4]。 #### 3. 建立地图表示模型 根据实际需求选择适合的地图表达形式,常见的有栅格地图(Grid Map),拓扑地图(Topological Map)等。其中前者更适合描述精确的空间布局关系;后者则侧重于反映节点之间的连接属性,适配更高层次的任务规划场合[^5]。 #### 4. 实现闭环检测机制 由于长时间运行过程中不可避免会出现重复访问相同区域的情况,因此引入有效的环闭合判定手段至关重要。可以通过比较当前帧与历史记录间的相似度得分来判断是否存在潜在匹配候选对象,并进一步验证其合理性从而修正累积误差带来的偏差影响[^6]。 ```python import numpy as np def preprocess_data(raw_radar_data): """ 对原始毫米波雷达数据进行初步清理 """ filtered_data = remove_noise(raw_radar_data) clusters = perform_clustering(filtered_data) return clusters def extract_features(clusters): """ 提取可用于SLAM的关特征 """ features = [] for cluster in clusters: feature_vector = compute_feature(cluster) if is_valid(feature_vector): features.append(feature_vector) return features def build_map(features, map_model='grid'): """ 构造指定类型的环境地图 """ if map_model == 'grid': grid_map = initialize_grid() update_with_features(grid_map, features) return grid_map elif map_model == 'topology': topology_graph = create_topology_structure() integrate_nodes(topology_graph, features) return topology_graph def detect_loop_closures(current_frame, history_frames): """ 执行循环一致性检查并调整姿态估计 """ candidates = find_similarities(current_frame, history_frames) verified_pairs = validate_candidates(candidates) adjust_estimations(verified_pairs) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值