基于深度学习yolo的昆虫检测系统
- 下载本文基于基于深度学习yolo的昆虫检测系统的完整代码的链接(文末可以加博主QQ):https://download.csdn.net/download/shooter7/90968112
- 此处是另外一个系统描述的链接:机器学习Opencv和SVM的车牌识别系统,可用于毕设课设。https://blog.csdn.net/shooter7/article/details/129935028
功能说明(遇到调试问题可私信博主)
技术栈:opencv、torch、pyqt5,yolov10
含系统调试步骤文档
功能:
- 支持照片识别昆虫
- 支持视频识别昆虫
- 支持摄像头实时识别昆虫
开发环境
- python版本:3…9.2
下载地址:https://pan.baidu.com/s/1Bzzu25KVEbhamp7swgGwnw提取码: htkz - 开发语言:python
- 开发软件: Pycharm开发工具
系统摘要
摘要:本文设计并实现了一种基于深度学习YOLOv10的昆虫检测系统,该系统通过PyQt5框架构建了交互式用户界面,支持图片上传、视频解析及摄像头实时检测功能。系统采用YOLOv10算法作为核心检测模型,通过优化网络结构和训练策略,显著提升了小目标昆虫的检测精度与速度。用户可通过界面灵活调节检测参数(如置信度阈值、IOU阈值等),以适应不同场景需求。实验结果表明,该系统在复杂背景、光照变化及多尺度昆虫目标下均表现出较高的鲁棒性和实时性取得不错的效果。本研究为农业病虫害监测、生态研究等领域提供了高效、便捷的智能化解决方案。
系统演示
-
系统指标图
-
系统主界面
-
下载本文基于深度学习yolo的昆虫检测系统的完整代码:https://download.csdn.net/download/shooter7/90968112
-
此处是另外一个系统描述的链接:机器学习Opencv和SVM的车牌识别系统,可用于毕设课设。https://blog.csdn.net/shooter7/article/details/129935028