文章目录
YOLOv8 的现状与局限
YOLOv8 作为目标检测领域的佼佼者,凭借其出色的性能和高效的实时性,在众多领域得到广泛应用。然而,随着人工智能技术的不断发展,对于目标检测的精度和速度要求也在不断提高。YOLOv8 虽然在目标检测任务中表现出色,但在一些复杂场景下,如目标尺度变化大、目标密集等情况时,仍然存在一定的局限性,如对小目标的检测精度有待提升、对复杂背景的适应性不够强等问题。因此,研究如何改进 YOLOv8 以突破这些局限,成为了当前研究的热点之一。
Damo-YOLO 的引入
Damo-YOLO 是一种新型的目标检测框架,它通过对模型结构的优化和训练策略的改进,有效提高了模型的性能。Damo-YOLO 在 YOLOv8 的基础上,采用了一种更高效的数据增强方法,能够生成更多样化的训练样本,从而增强模型对不同场景的适应能力。此外,Damo-YOLO 还引入了一种新的损失函数,能够更精准地度量模型预测结果与真实标签之间的差异,从而指导模型更好地进行学习和优化。通过这些改进,Damo-YOLO 在保持 YOLOv8 高效性的基础上,有效提高了目标检测的精度,尤其在处理复杂场景时表现出色。