文章目录
一、引言
YOLO(You Only Look Once)系列目标检测算法在计算机视觉领域一直备受关注,其高效性和准确性使其在众多应用场景中发挥着重要作用。YOLOv8 作为最新的版本,继承了前代的优良特性并进行了诸多改进。本文将深入探讨如何通过融合 Damo-YOLO 与 Dyhead 检测头进一步提升 YOLOv8 的性能,突破极限涨点,为读者呈现这一创新性的改进方案。
二、YOLOv8 简介
YOLOv8 是 Ultralytics 团队开发的一种实时目标检测算法,它基于 Transformer 架构,在速度和精度上都有显著提升。其主要特点包括:
- 改进的 Backbone :采用了更高效的特征提取网络,能够更好地捕捉图像中的目标特征。
- 增强的 Neck :通过改进的特征融合结构,使得不同层次的特征能够更有效地进行交互和融合。
- 优化的 Head :对检测头进行了调整,提高了定位和分类的准确性。
这些改进使得 YOLOv8 在各种目标检测任务中表现出色,成为了当前目标检测领域的一个重要里程碑。