在企业级应用中使用LLM(大语言模型),最重要的便是提示词的设计。提示词设计有3个重要的知识版块,分别是:提示框架、提示工程、反向提示工程。
-
提示框架:是一种结构化的提示词描述方式,用于引导模型学习数据的特征和模式,比较常用的提示框架包括CREATE提示框架(即:角色、请求、示例、调整、输出类型、附加功能)等等。
-
提示工程:具体来说,提示工程它是一组提示策略的组合,帮助LLM克服数据偏差,以及解决生成结果的一致性和可控性。具体的策略包括:给定样本、思维链、生成知识提示、提示一致性、等其他策略。
-
反向提示工程:指通过LLM从输出文本反向获取提示信息,优化了人工撰写提示词的不完备性。
在应用LLM的过程中,如果是简单的业务,可能只需要一系列简单的提示词组合即可实现业务诉求。但是大部分需要使用LLM的业务,并非是简单的业务,它需要综合考虑多系统、多角色、多任务的协同,此时再通过简单的提示词,将无法实现复杂的业务需求。而“提示工程”便是解决复杂业务过程中的利器。
一、给定样本提示
给定样本提示策略,即可向LLM提问时,为LLM提供正负样本。具体的策略包括:零样本提示、单样本提示、少样本提示。