【pytorch】由dataloader引发的死锁

本文探讨了PyTorch在使用DataLoader多进程加载数据时遇到的死锁问题,该问题常见于训练过程,特别是在特定配置下如PyTorch 1.1, Python 3.6和CUDA 9.0环境下。文章提供了有效的解决方案,即通过将dataloader的num_workers设置为0来避免死锁,同时提及了一些可能的替代方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题阐述:

pytorch在训练过程中由于dataloader 多进程加载数据 导致的死锁, 使得程序训练暂停。该问题在pytorch的官方github上的issue上有提到, 这里不再赘述。
https://github.com/pytorch/pytorch/issues/1355

问题出现的平台

我这边出现的平台,不限于

  • pytorch 1.1
  • python 3.6
  • CUDA 9.0

问题解决办法:

一个肯定能解决的办法: 将dataloader的num_worker 设置为 0
其他的:(但对我来说,都不work, 图来自 https://github.com/pytorch/pytorch/issues/1355#issuecomment-563765333)
在这里插入图片描述

<think>嗯,用户想将PyTorch的单卡训练代码改成多卡训练的。首先,我需要回忆一下PyTorch多卡训练的方法。通常,PyTorch支持两种主要的多卡训练方式:DataParallel(DP)和DistributedDataParallel(DDP)。DataParallel比较简单,但效率可能不如DDP,特别是在多机多卡的情况下。而DDP虽然复杂一些,但性能更好,适合大规模训练。 用户可能对这两种方法不太了解,需要解释清楚区别。可能他们需要的是快速上手,所以得先给出两种方法的步骤,然后比较优缺点。另外,用户可能在使用过程中遇到问题,比如GPU负载不均衡,或者多进程启动的问题,所以注意事项部分也很重要。 首先,对于DataParallel,修改起来确实简单,只需要用DataParallel包装模型,然后调整batch size。但要注意,DP有一个主卡,其他卡的计算结果会汇总到主卡,可能导致主卡内存不足。这时候需要提醒用户如果遇到内存问题,可能需要换用DDP。 然后是DDP的部分,DDP需要更多的设置,比如初始化进程组,配置本地rank,使用DistributedSampler,还有启动脚本。用户可能不熟悉多进程启动,这里需要给出具体的代码示例和启动命令,比如用torch.distributed.launch或者torchrun。 还要提到DDP中每个进程处理自己的数据分片,所以Sampler需要调整,避免数据重复。另外,保存模型的时候要注意只在主进程保存,否则可能会多个进程同时写文件,导致问题。 混合精度训练也是一个常见的需求,所以可以补充一下如何结合DDP和AMP,比如使用autocast和GradScaler。 用户可能关心代码修改的步骤是否清晰,所以需要分点说明,每个步骤的关键代码部分,让用户能跟着做。同时,注意事项部分需要提醒常见的坑,比如batch size的设置、学习率调整、GPU选择、版本兼容性等。 最后,总结一下两种方法的适用场景,帮助用户根据自身情况选择。比如,快速实验用DP,大规模训练用DDP。可能用户的需求是希望提升训练速度,但资源有限,所以需要给出实际的建议,比如如果卡不多,DP可能够用,但卡多的话DDP更好。 检查一下是否有遗漏的部分,比如是否需要修改优化器或者学习率调度器?在DDP中,优化器会自动处理梯度同步,所以用户不需要额外修改,这部分可能不需要提。但要注意模型参数只在主进程初始化,或者需要同步,可能需要用到torch.save的时候加上module属性。 另外,启动命令中的参数是否正确,比如--nproc_per_node指定每个节点的进程数,通常等于GPU数量。还有是否需要设置MASTER_ADDR和MASTER_PORT,特别是在多机情况下,但单机多卡可能不需要,所以示例中可以省略,但提一下如果有需要的情况。 确保代码示例正确,比如在DDP中,model = DDP(model, device_ids=[local_rank]),这个是否正确?或者是否应该将模型移到device之后再用DDP包装?可能需要调整顺序,先.to(device),再包装。 总之,步骤要详细但不过于复杂,让用户能一步步操作,同时指出可能的错误和解决方法。这样用户即使遇到问题,也能根据注意事项进行排查。</think>将PyTorch单卡训练代码改为多卡训练需要以下核心步骤,分为`DataParallel`(简单但效率有限)和`DistributedDataParallel`(推荐的高效方法)两种方案: --- ### 方案一:DataParallel(适合快速实验) **优点**:代码改动小,适合快速验证 **缺点**:效率较低(主卡瓶颈),不支持多机 ```python import torch.nn as nn # 原单卡代码 model = MyModel().cuda() # 改为多卡(自动分配数据到所有可见GPU) model = nn.DataParallel(model) # 注意:batch_size需调整为单卡的n倍(n为GPU数量) ``` --- ### 方案二:DistributedDataParallel(DDP,生产环境推荐) **优点**:高效无瓶颈,支持多机多卡 **步骤**: 1. **初始化进程组** ```python import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP dist.init_process_group(backend='nccl', init_method='env://') local_rank = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) ``` 2. **模型包装** ```python model = MyModel().to(local_rank) model = DDP(model, device_ids=[local_rank]) ``` 3. **数据加载器改造** ```python from torch.utils.data.distributed import DistributedSampler train_sampler = DistributedSampler(dataset, shuffle=True) dataloader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler) ``` 4. **训练循环调整** ```python for epoch in range(epochs): dataloader.sampler.set_epoch(epoch) # 保证shuffle有效性 for x, y in dataloader: x, y = x.to(local_rank), y.to(local_rank) # 后续与单卡训练相同 ``` 5. **启动命令** ```bash # 单机4卡示例 python -m torch.distributed.launch --nproc_per_node=4 train.py # 或使用新版本torchrun(推荐) torchrun --nproc_per_node=4 train.py ``` --- ### 关键注意事项 1. **Batch Size设置**:总batch_size = 单卡batch_size × GPU数量 2. **学习率调整**:通常需要线性缩放(lr = base_lr × GPU数量) 3. **模型保存**:通过`model.module`获取原始模型对象 4. **日志处理**:只在`local_rank==0`的进程执行打印/保存操作 5. **混合精度训练**:需配合`torch.cuda.amp`使用 --- ### 常见问题解决 1. **GPU显存不均**:检查是否漏写`torch.cuda.set_device` 2. **进程死锁**:确保`DistributedSampler`正确设置 3. **NCCL错误**:添加`NCCL_DEBUG=INFO`环境变量调试 推荐优先使用DDP方案,虽然代码改动较多,但能获得更好的扩展性。实际修改时建议使用`torchrun`作为启动器(PyTorch 1.9+),它自动处理环境变量设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值