这是一篇被CVPR2019收录的论文,论文名称:《Deep Network Interpolation for Continuous Imagery Effect Transition》
作者:由xintao大佬一作,Yu Ke, Dong Chao, XIaoou Tang(汤老师), Chen Change Loy(吕老师)
商汤出品,必属精品。
项目主页: https://github.com/xinntao/DNI
文章主旨
深度卷积网络在学习一个特定的映射上表现出了很强的能力,然而由于用户群和目标的变化,会想要得到一些连续的输出变化。跟现存的方法只能一对一映射不同(比如风格迁移),本文提出了一种有效且通用的方法来获取对目标图像的效果控制。本文将将该方法称之为Deep Network Interpolation, 一种通过对网络参数的插值来控制输出的连续性变化的方法。
Deep Network Interpolation (DNI)参数插值
很多low-level的视觉任务都是一种图像到另一种图像之间的迁移,比如说图像修复, 图像风格迁移。深度卷积网络可以很好的直接学习源图像 x x x到目标图像 y y y的映射, y = G θ ( x ) y=G_{\theta}(x) y=Gθ(x)。
那么考虑两个完全相同的网络 G A G^A GA和 G B G^B GB, 分别实现了两种不同映射效果A和B效果。在这里,作者进行假设两个网络的参数 θ A \theta_A θA和 θ B \theta_B θ