Easy-Dataset实现文档生成数据集

一、概述

Easy Dataset是一个专门为大型语言模型(LLM)创建微调数据集而设计的应用程序。它提供了一个直观的界面,用于上传特定领域的文件、智能分割内容、生成问题以及为模型微调生成高质量的训练数据。


使用Easy Dataset,您可以将领域知识转换为结构化数据集,与遵循OpenAI格式的所有LLM API兼容,使微调过程简单高效。

二、项目安装

项目的安装比较方便,有3种方式:

1.客户端安装

比较简单,直接下载客户端,安装后即可使用。

2.源码安装

可以修改源代码,功能调整,自主性较好。

源代码下载

git clone https://github.com/ConardLi/easy-dataset.git

cd easy-dataset

安装依赖项

npm install

启动开发服务器

npm run build

npm run start

3.Docker容器安装

克隆代码库

git clone https://github.com/ConardLi/easy-dataset.git
cd easy-dataset

构建 Docker 映像

docker build -t easy-dataset .

运行容器

docker run -d -p 1717:1717 -v {YOUR_LOCAL_DB_PATH}:/app/local-db --name easy-dataset easy-dataset

注意:需要修改YOUR_LOCAL_DB_PATH为你自己的数据存储路径。

打开浏览器并导航至http://localhost:1717

本文使用第一种方式,下载windows客户端

https://github.com/ConardLi/easy-dataset/releases/tag/1.3.7

下载完成后,双击exe程序,下一步,下一步安装即可,很简单。

安装完成后,效果如下:

三、项目使用

准备原始文件

下载《网络安全法规摘编手册》pdf文件,这个是由兰州大学编写的。兰州大学是中国教育部直属的全国重点综合性大学,位列国家“双一流”、“985工程”和“211工程”,属于中国高校第一梯队的中上水平。

链接如下:

https://jchyxy.lzu.edu.cn/jcyxy/upload/files/N20211112170341.pdf

创建新项目

创建项目“网络安全法规”,本文以生成法律法规的领域数据为例。如图所示。

项目名称:网络安全法规

项目描述:构建网络安全法规的微调数据集

模型配置

由于pdf文件比较大,有5M左右,可能会耗费很多tokens,使用收费的,不划算,所以打算本地启动大模型。

使用LM Studio软件,启动一个deepseek-r1-distill-llama-8b模型

注意:模型最好选择deepseek-r1,v1,v3都行。

我测试用qwen3扫描pdf文件,批量生成问题,有异常。

项目创建完成后,进行模型配置,这一步可以根据各自情况配置,配置也非常简单,选择“项目设置” -> “模型配置”,如下图

确保能刷新出模型,然后选择即可。

 拆分文本

选择“文献处理”,右边要选择AI模型,否则无法上传

上传准备好的行业数据MD文件,选择基础PDF解析

 点击上传并处理

可以全部选择拆分后的文本,然后批量生成问题,如下图。

 这里生成问题需要等待一段时间:

 打开LM Studio,这里可以看到大模型运行过程

 查看GPU使用率,最高在90%左右

大概10分钟左右,就可以完成。

问题管理

 选择“问题管理”,勾选生成的问题,选择“批量构造数据集”,过程仍需等待一段时间。

继续等待

 这个过程比较漫长,也是比较耗费GPU的,90%左右的使用率。大概持续45分钟左右。

构建数据集

选择“导出数据集”,下载构建好的网络安全行业数据。

导出数据集,这里都是默认的。

设置系统提示词“你是一位法律专家,擅长网络安全法”。

导出之后,会得到一个文件datasets-kwWD-GPA3SKm-alpaca-2025-06-13.json

查看文件大小,257kb,有点小,1MB都没有。

哎,没办法,只生成了108个问题,如果有更多的问题,文件就比较大了。

我们打开文件,可以看到导出的数据集案例。

至此,我们已利用 Easy Dataset 工具完成了“网络安全领域数据集” 的处理与生成。

虽然演示过程相对基础,但其过程充分展现了该工具的高度实用性:仅需执行三项核心操作,即可生成适用于微调的数据集。

数据集工厂

点击搜索公开数据集

 打开一个数据集

 可以看到,这个数据集很庞大,115.9GB

 文章到此结束,总体来说,你可以将pdf文件,或者其他文本文件,比如world,txt,md,生成数据集。

也可以下载公开的数据集,来完成你的AI模型微调。

本文参考链接:https://blog.csdn.net/weixin_46880696/article/details/147784014

### 简单数据集的介绍 对于初学者来说,选择一个简单且易于理解的数据集是学习数据分析和机器学习的重要步骤。以下是几个适合初学者使用的数据集[^1]: 1. **Iris 数据集** Iris 数据集是一个经典的多分类问题数据集,包含 150 条记录,分为三个类别(每类 50 条)。每个样本有四个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。这个数据集非常适合用于学习分类算法,例如逻辑回归、支持向量机等[^3]。 2. **Boston 房价数据集** Boston 房价数据集是一个回归问题数据集,包含波士顿地区房屋的相关信息。它有 506 条记录和 13 个特征,目标是预测房价中位数。这个数据集可以帮助初学者理解线性回归模型和其他回归技术的工作原理[^3]。 3. **MNIST 手写数字数据集** MNIST 是一个图像分类问题数据集,包含 70,000 张手写数字(0-9)的灰度图像,每张图像为 28x28 像素。它是学习卷积神经网络(CNN)和其他图像处理技术的理想起点[^5]。 4. **Titanic 生存预测数据集** Titanic 数据集来自 Kaggle,记录了泰坦尼克号沉没事件中的乘客信息,包括年龄、性别、船票价格等特征。目标是预测乘客是否幸存。这个数据集不仅适合学习分类模型,还适合练习数据清洗和特征工程。 以下是一个简单的 Python 示例代码,展示如何加载并可视化 Iris 数据集: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris # 加载 Iris 数据集 data = load_iris() X = data.data y = data.target # 可视化前两个特征 plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1, edgecolor='k') plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.title('Iris Dataset Visualization') plt.show() ``` ### 数据集的特点与应用场景 - Iris 数据集因其较小的规模和清晰的分类标签,成为分类问题的经典入门案例。 - Boston 房价数据集则适用于学习如何处理连续数值目标变量的回归问题。 - MNIST 数据集适合深度学习初学者,尤其是那些对图像识别感兴趣的用户。 - Titanic 数据集则提供了一个综合性的挑战,涉及数据预处理、特征选择和模型训练等多个方面[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值