最小二乘法

本文通过几何视角解读了最小二乘法的本质,将其视为求解向量距离最小化的问题,并解释了如何通过线性组合找到最佳拟合直线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最小二乘法总结

因为某向量的长度(似乎在欧式空间下)等于向量各元素的平方和,再开方。
因此,均方误差可以看成是某向量的长度的平方。这个均方误差的每一项可以看成是这个向量的一个元素。

yiyn(a011+a1xinn)

若要求均方误差的最小值,则转化为求该向量的长度最小。
从该向量的式子观察可知,括号内是两个向量 [1, … , 1]T 和 [x1, … , xn]T 的线性组合,换句话说,它是这两个向量构成的二维子空间(想成一个平面就可以)的任意一点。
整个式子的向量的长度表示向量 [y1, … , yn]T 到这个二维子空间任意一点的距离!把这个向量长度最小化的意思是:寻找在 [1, … , 1]T 和 [x1, … , xn]T 构成的二维子空间上的一个点,使得向量 [y1, … , yn]T 到这个点的距离最小。

注:即这里将一个向量看成一个维度。而不是像以往那样将一个向量中的一个元素看成一个维度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值