【NLP】DeepSpeed-FastGen:通过 MII 和 DeepSpeed-Inference 为LLM生成高通量文本

一、简介

GPT-4 和 LLaMA 等大型语言模型 (LLM) 已成为服务于各个级别的人工智能应用程序的主要工作负载。从一般聊天模型到文档摘要,从自动驾驶到软件堆栈每一层的副驾驶,大规模部署和服务这些模型的需求猛增。虽然 DeepSpeed、PyTorch 等框架可以在 LLM 训练期间定期实现良好的硬件利用率,但这些应用程序的交互性和开放式文本生成等任务的较差算术强度已成为现有系统中推理吞吐量的瓶颈。

为此,由 PagedAttention 提供支持的

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值