面对大量指标、模型,如何在研发度量中兼顾易用性?

在数据度量体系的建设进程里,完成数据治理、获取基础数据后,不少企业容易陷入一个误区:盲目大量计算指标,满心期待能从堆积如山的指标和复杂模型中挖掘出有价值的洞察。就拿我们自身产品早期的经历来说,团队花费大量时间和精力计算各类指标,生成形形色色的图表。咨询师们每天忙于向客户阐释这些指标和图表,详细解读图表所反映的问题。从单一的数据分析流程来看,这并没有错,解读数据本就是释放数据价值的常规操作。但从整个度量体系建设的宏观视角审视,这一过程极易出现本末倒置的情况,前期过于关注指标和图表,却忽略了数据度量的根本目的。

相较于上述做法,业界经过多年实践验证,更推崇 GQM(目标 - 问题 - 指标)方法。它的核心在于转换思路,从目标开启数据度量之旅。以一家电商企业为例,其目标设定为提升用户复购率。首先,企业内部需达成一致,明确这个目标的重要性和具体方向。接着,围绕目标进行拆解,思考需要解答哪些问题才能实现目标。比如,要了解用户的购买周期是怎样的,不同年龄段用户的复购情况如何,以及用户对不同品类产品的复购偏好等。针对这些问题,设计相应的指标,像平均购买周期、各年龄段用户复购率、不同品类产品复购率等。通过这样的流程,当计算得出指标后,便能精准回答预先设定的问题,进而助力企业达成提升用户复购率的目标,形成一个完整且高效的闭环,确保数据度量始终朝着正确方向推进。

GQM 方法论起源于美国,凭借其科学严谨性和卓越成效,被誉为 “研发效能度量的事实标准”。若想深入了解 GQM,推荐阅读我们的博客《GQM 从入门到精通》(https://meri.co/gqm),这是目前国内对 GQM 方法最为全面且深入的中文资料,还融入了我们结合国内实际情况和用户理解习惯所做的优化与调整。

解决了指标计算的方向问题后,指标定义细节的统一也不容忽视。建立 “研发指标中台” 是目前的最佳实践。各业务团队以指标中台为依托,结合自身业务中涉及的对象、维度、周期等特定需求,生成专属的指标视图。比如,销售团队依据销售周期、不同区域市场等维度,从指标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值