提示词工程: 大语言模型的Embedding(嵌入和Fine-tuning(微调)

本文是针对这篇文章(https://www.promptengineering.org/master-prompt-engineering-llm-embedding-and-fine-tuning/)的中文翻译,用以详细介绍Embedding(语义嵌入)和Fine Tuning(微调)的概念和比较。

LLM(GPT-3/3.5/4)已经成为一个热门的讨论话题,因为人们寻求利用这种先进的语言模型来实现各种应用,如问答(QA)和信息检索。虽然语义嵌入和微调都是用来适应特定任务的LLM技术,但它们有不同的目的和优势。我们将一起探讨这两个概念,因为它们是相关的,而且经常有关于何时使用哪种技术的困惑。

语义嵌入:表示和应用

语义嵌入是文本的数值向量表示,能够捕捉单词或短语的语义含义。通过比较和分析这些向量,可以辨别文本元素之间的相似性和差异性。利用语义嵌入进行搜索可以快速有效地检索相关信息,特别是在大型数据集中。语义搜索相比微调有几个优势,如更快的搜索速度、降低计算成本以及防止杜撰或事实捏造。由于这些优势,当目标是访问模型中的特定知识时,语义搜索通常是首选。嵌入在各个领域都有应用,包括推荐引擎、搜索功能和文本分类。例如,在为一个流媒体平台设计一个电影推荐引擎时,嵌入可以根据它们的文本描述来识别具有相似主题或类型的电影。通过将这些描述表示为向量,引擎可以计算它们之间的距离,并推荐向量空间中距离较近的电影,确保更准确和相关的用户体验。

微调:提高模型响应

微调是一种用来改善预训练模型性能的技术,如聊天机器人。通过提供示例并调整模型参数,微调使模型能够为特定任务生成更准确和上下文相关的响应。这些任务可以从聊天机器人对话和代码生成到问题形成等不同范围,确保与期望输出更好地对齐。这个过程类似于神经网络在训练过程中调整其权重。例如,在客服聊天机器人中,微调可以提高聊天机器人对行业特定术语或行话的理解,从而更准确和恰当地回答客户询问。作为一种迁移学习形式,微调使预训练模型能够执行新任务,而无需进行大量的重新训练。

LLM嵌入和向量搜索的概述:

嵌入过程是大型语言模型(LLM)如GPT-3/Gpt-3.5/GPT-4的一个重要组成部分,因为它允许以数值格式对文本进行语义理解和表示。以下是LLM嵌入过程的逐步概述的内容:

  • 首先,LLM接收一个文本输入,如一个单词或一个句子,并将其分割成一系列的标记(tokens)。标记是文本的最小单位,通常是单个字符或子词。例如,单词“prompt”可以被分割成两个标记:“prom”和“pt”。

  • 然后,LLM将每个标记映射到一个嵌入矩阵中的一个向量。嵌入矩阵是一个包含数千个向量的大型表格,每个向量代表一个标记。这些向量的维度通常为768或1024,取决于LLM的大小。例如,“prom”和“pt”的向量可能分别为[0.2, -0.1, 0.3, …]和[-0.4, 0.5, -0.2, …]。

  • 接下来,LLM将这些向量相加,得到一个表示整个文本输入的单个向量。这个向量被称为语义嵌入(semantic embedding),因为它捕捉了文本的语义信息。例如,“prompt”的嵌入可能是[0.2, -0.1, 0.3, …] + [-0.4, 0.5, -0.2, …] = [-0.2, 0.4, 0.1, …]。

  • 最后,LLM使用这个嵌入向量作为输入,通过一系列的神经网络层来生成输出。输出可以是文本、图像或其他类型的数据,取决于LLM的目标。例如,如果LLM的目标是生成一个与“prompt”相关的句子,它可能会输出“Prompt engineering is a skill that involves crafting text-based prompts for AI systems.”。

使用向量搜索进行语义检索:

当我们想要从LLM中检索特定的知识时,我们可以利用向量搜索(vector search)技术。向量搜索是一种基于语义嵌入进行信息检索的方法,它可以在大型数据集中快速找到最相关的结果。以下是使用向量搜索进行语义检索的步骤:

  • 首先,我们需要准备一个包含我们想要检索的知识的数据集。数据集可以是任何类型的文本数据,如文章、书籍、百科全书等。例如,如果我们想要从维基百科中检索关于太阳系行星的知识,我们可以使用维基百科文章作为数据集。

  • 然后,我们需要对数据集中的每个文本元素(如标题、段落或句子)进行嵌入,并将它们存储在一个索引中。索引是一个包含所有嵌入向量及其对应文本元素的数据库。例如,如果我们对维基百科文章中的每个标题进行嵌入,并将它们存储在一个索引中,我们可能会得到类似于以下内容的结果:

嵌入向量 标题
[0.1, -0.2, 0.3, …] 太阳
[-0.4, 0.5, -0.1, …] 地球
[0.2, -0.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明哲AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值