
AI助力科研
文章平均质量分 85
AI大模型助力科研发展
明哲AI
AIGC、LLM(大模型)技术研究与商业变现
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
医疗AI | 梳理全球医疗大模型
在辅助诊疗方面,灵医大模型可实现通过多轮对话了解病人病情,实时辅助医生确诊疾病,推荐治疗方案,提升就诊全流程的效率和体验,并成为患者的24小时“健康管家”,提供智能客服服务。所有知识来源都已经过验证,因而可为大模型输出的结果提供权威依据。卫宁健康已于2023年1月开展了医疗垂直领域的大语言模型WiNGPT的研发和训练工作,截至4月、6月和9月的模型训练参数量达到或将达到60亿、156亿、650亿,目前正在探索更多的医疗应用场景,计划于10月正式发布由GPT技术加持的新产品WiNEX Copilot。原创 2023-10-11 22:52:24 · 9259 阅读 · 1 评论 -
AI与药学 | 人工智能赋能个体化精准给药策略
AI不仅可以处理传统TDM数据,更能够整合来自EHR、基因组学、影像学等多维度、非结构化的数据,实现更全面、更深入的个体化药物治疗。未来的发展需要跨学科的合作,包括临床医生、药代动力学家、数据科学家、信息学家等,共同构建开放、协作的平台,推动AI技术在精准给药领域的落地应用,最终惠及广大患者。尽管技术不断进步,电子健康记录(EHRs)普及、数据可及性提升、云计算基础设施兴起,加速了模型指导的精准给药(MIPD)的推广,但实际应用仍然有限,且多为单机构内部方案,缺乏数据、模型和决策支持系统的协同共享。原创 2025-01-26 20:56:53 · 1399 阅读 · 0 评论 -
AI与药学 | TCM-FP:基于大模型微调的中医处方预测
TCM-FTP的成功,不仅为中医的现代化和智能化提供了新的思路,也为LLM在其他专业领域的应用提供了有益的借鉴。为了验证TCM-FTP的实际疗效,作者还邀请了五位经验丰富的中医专家对模型生成的处方进行了定性评估。结果显示,TCM-FTP在两个指标上都取得了显著优于其他模型的分数,这表明TCM-FTP生成的处方不仅准确,而且符合中医理论,具有较好的疗效和安全性。与基线模型相比,TCM-FTP不仅超越了传统的TCM处方预测模型,也显著优于未经过精调的LLMs(例如,GPT-3.5和GPT-4.0)。原创 2025-01-25 22:58:21 · 1394 阅读 · 0 评论 -
AI与药学 | 大模型在药物相互作用预测的应用进展
大语言模型(LLMs)在药物相互作用研究中的应用正成为药物发现、临床治疗优化和个性化医疗领域的一个重要方向。原创 2025-01-24 21:24:16 · 1421 阅读 · 0 评论 -
拥抱AI,赋能药学:人工智能在药学领域的应用与展望
本文将深入解读《A REVIEW ON “AI INTEGRATION IN PHARMACY PRACTICE”》这篇综述,抽丝剥茧地分析AI如何重塑药学实践的各个环节,探讨其背后的技术逻辑、应用场景、面临的挑战以及未来的无限可能,为读者呈现一幅AI赋能药学发展的全景图。这些案例研究表明,AI并非遥不可及的未来科技,而是已经落地生根,并开始在药学实践中发挥重要作用,并逐渐成为临床实践的一部分,推动着药学服务的升级和转型。如何培养适应AI时代的药学人才,以及如何引导药剂师的角色转变,是一个重要的课题。原创 2025-01-23 20:39:30 · 5642 阅读 · 0 评论 -
AI与药学 | 大模型赋能用药处方:迈向更清晰、个性化、无偏见的用药指导新时代
虽然目前仍面临诸多挑战,但随着技术的不断进步和研究的不断深入,我们有理由相信,在不久的将来,LLMs 将成为医务人员的得力助手,为患者提供更加清晰、个性化、无偏见的用药指导,为构建更加智能、高效、人性化的医疗服务体系贡献力量。大语言模型 (LLMs),电子处方,用药指导,个性化,人工智能,医疗信息学,提示工程,GPT-4,Llama 3,药师,人机协作,检索增强生成(RAG),微调,伦理,安全性,大模型。在提示词 2 的基础上,进一步要求模型删除任何可能存在的隐性和显性偏见,确保用药指导的公平性和包容性。原创 2025-01-22 09:28:27 · 1613 阅读 · 0 评论 -
AI与药学|当AI遇上老药新用,DrugReAlign—基于大模型的多源提示药物重定位框架
近年来,随着生物信息学和深度学习的快速发展,计算方法在药物重定位领域取得了显著进展,能够自动提取药物和靶点的复杂特征,提高预测的准确性和可解释性。然而,这些基于深度学习的方法通常依赖于特定的数据集进行训练,这在面对浩如烟海的药物和靶点时,其预测的准确性和范围都受到了限制。它就像在已有的药柜里寻宝,挖掘出已被批准上市或处于临床试验阶段的药物,用于治疗新的疾病,大大缩短了研发周期,降低了成本和风险。更重要的是,研究发现。这意味着,通过优化提示信息的质量和方式,可以进一步提升LLMs在药物重定位中的表现。原创 2025-01-21 09:55:01 · 1657 阅读 · 0 评论 -
AI与药学 | Med-Pal:轻量级大模型在药物咨询领域的应用
该数据集涵盖了新加坡健康服务系统内住院和门诊亚专科诊所最常用的 110 种药物,覆盖了 14 种不同的解剖治疗分类 (ATC) 和 12 个广泛的药物咨询领域,例如药物管理、不良反应、禁忌症、剂量方案、药物相互作用等。通过在验证集上的表现评估,Mistral-7b 以其最高的总分和在安全性和准确性方面的优异表现脱颖而出,被选为 Med-Pal 的基础模型。更重要的是,Med-Pal 的轻量级特性使其能够在资源受限地区发挥重要作用,推动数字医疗的普及,让更多人享受到 AI 技术带来的便利。原创 2025-01-20 21:17:47 · 1430 阅读 · 0 评论 -
AI与药学|基于知识图谱增强的泛癌症问答大模型框架
的创新框架,巧妙地将LLM与知识图谱(KG)融合,利用KG中结构化的医学知识增强LLM的推理能力,显著提高了LLM在泛癌问答任务中的准确性。KGT首先构建一个基于知识图谱模式的图。基于选择的最佳路径和问题中提取的关键信息,KGT利用LLM生成Cypher查询语句,并利用该语句从知识图谱中检索包含与问题相关的所有实体和关系的子图。在特定领域的数据上微调LLM可以提高其准确性,但需要消耗大量的计算资源和时间,且面临灾难性遗忘的风险,即模型在学习新知识的同时会忘记旧知识。原创 2025-01-19 14:40:55 · 1201 阅读 · 0 评论 -
AI与药学|FastRx:基于 Fastformer 和记忆增强图神经网络的个性化用药推荐模型
个性化用药推荐,作为精准医疗的重要组成部分,旨在根据患者的个体情况,推荐安全有效的药物组合。然而,如何从纷繁复杂的 EHR 数据中提取有效信息,并考虑药物间的相互作用(DDI),避免不良反应,一直是该领域面临的挑战。FastRx 模型通过巧妙地融合 Fastformer 和 GCN,并结合动态记忆机制,有效地捕捉了患者病史的纵向信息,并考虑了药物间的复杂相互作用。传统的基于规则或实例的药物推荐方法,仅关注患者当前的诊断和治疗信息,忽略了疾病的进展和患者的用药历史。过去的药物是否仍然有效?原创 2025-01-18 10:47:58 · 1040 阅读 · 0 评论 -
AI与药学|DAPSNet:基于双重注意力机制和患者相似性的药物推荐模型
药物推荐,大模型、人工智能、电子健康档案 (EHR),多重用药,药物-药物相互作用 (DDI),病人表征,双重注意力机制,病人表征记忆库 (PM),信息瓶颈 (IB),信息约束损失,图卷积网络 (GCN),深度学习,MIMIC-III 数据集,纵向数据。药物推荐,大模型、人工智能、电子健康档案 (EHR),多重用药,药物-药物相互作用 (DDI),病人表征,双重注意力机制,病人表征记忆库 (PM),信息瓶颈 (IB),信息约束损失,图卷积网络 (GCN),深度学习,MIMIC-III 数据集,纵向数据。原创 2025-01-16 15:11:37 · 772 阅读 · 0 评论 -
AI与药学| Nature Medicine:大模型MEDIC显著降低药店用药指导错误
人工智能,大语言模型,大模型,药物指导错误,线上药房,互联网医院,患者安全,医疗效率,MEDIC,近错事件,Nature Medicine,迁移学习,微调,药店,连锁药店,药物知识库,安全防护。这不仅验证了其在减少药物说明错误方面的有效性,也突显了将先进的人工智能技术应用于医疗领域,特别是在高风险环境中,对提升患者安全和工作效率的重要意义。MEDIC的设计使其易于转移到其他药房,或作为外部服务使用,其主要基于合成生成的指导和公开可用的数据集,消除了其适用性超出亚马逊药房的任何限制。原创 2025-01-15 09:49:22 · 1556 阅读 · 0 评论 -
AI与药学:基于大模型的多智能体药物不良事件提取系统—MALADE
MALADE 利用 RAG 技术,将从文本资源中提取的相关信息增强输入给 LLM 的查询,并指示 LLM 生成与增强数据一致的响应。然而,药物和结果术语的多样性,以及 ADE 描述通常隐藏在大量叙述性文本中,使得 ADE 提取任务极具挑战性。这种协同关系类似于复杂性理论中使用的交互式证明系统:证明者 (Agent) 提出解决方案,验证者 (Critic) 检查解决方案的有效性。近年来,大语言模型 (LLMs) 在文本理解和生成方面展现出惊人的能力,为医学知识的可靠合成、提取和总结提供了前所未有的机遇。原创 2025-01-14 09:53:55 · 1020 阅读 · 0 评论 -
AI与药学:机器学习预测早期结肠癌中奥沙利铂的疗效
然而,奥沙利铂虽然能使复发风险降低约5%,但会引发约90%患者出现神经毒性,其中超过30%的患者会遭受永久性神经毒性,严重影响患者的生活质量。研究结果支持在临床实践中应用COLOXIS模型指导奥沙利铂的精准使用,即仅对COLOXIS+患者使用奥沙利铂,从而避免COLOXIS-患者遭受不必要的毒副作用。在接受FULV方案治疗的患者中,COLOXIS+组患者的预后较差(HR, 1.52;在1065例患者中,COLOXIS模型将526例患者预测为COLOXIS+,539例患者预测为COLOXIS-。原创 2025-01-13 10:12:46 · 753 阅读 · 0 评论 -
AI与药学:大语言模型赋能药物推荐
该研究的核心思想在于,将临床记录这类非结构化数据,通过 LLM 转化为机器可理解的向量表示,然后将这种蕴含丰富语义信息的文本表示与传统的医疗编码表示进行融合,从而构建更全面、更精准的患者画像,为药物推荐模型提供更丰富的信息输入。LLM 的引入,为非结构化医疗数据的利用开辟了新的途径,有望打破长期以来困扰业界的“数据孤岛”问题,释放 EMR 数据的巨大价值。该研究提出的方法具有很强的通用性,可以应用于多种现有的药物推荐模型,并已经在不同数据集上得到了验证,具有广泛的应用前景。原创 2025-01-13 09:53:47 · 1320 阅读 · 0 评论 -
CancerGPT :基于大语言模型的罕见癌症药物对协同作用少样本预测研究
该研究聚焦于一个极具挑战性的前沿领域:如何利用大语言模型(LLMs)在数据极为稀缺的罕见癌症组织中,实现对药物对协同作用的精准预测。本研究提出的 CancerGPT 模型,为解决罕见癌症药物对协同作用预测难题提供了新的思路和有效工具,并为 LLMs 在生物医学领域的应用提供了重要的理论和实践依据。参数量较小的 CancerGPT (124M) 性能优于参数量更大的 GPT-3 (175B),表明在特定任务中,模型性能并非单纯依赖于参数规模,精细化的微调策略可能更为关键。原创 2025-01-10 10:29:12 · 1791 阅读 · 0 评论 -
AI与药学:生成式人工智能如何帮助构建患者药品说明书?
今天我们一起来研读下一篇AI药学论文《生成式人工智能构建患者药品说明书的方法研究》,详细探讨了如何通过生成式人工智能(GenAI)来构建适合患者的药品说明书,旨在提升患者对药品使用的理解和依从性,并促进合理用药。原创 2025-01-09 11:26:00 · 1505 阅读 · 0 评论 -
AI与药学:用药咨询场景的检索增强AI大模型
该框架的核心创新在于采用了“工具调用”(ToolCalling)机制,将传统的“检索-阅读”(Retrieve-then-Read)模式改进为“提炼-检索-阅读”(Distill-Retrieve-Read)模式。该框架的核心创新在于利用LLM的工具调用能力,将复杂的对话历史提炼成简洁有效的搜索查询,模拟搜索引擎的关键词检索方式。虽然MedicineQA具有较高的质量,但目前的数据量相对有限,可以进一步扩大数据集的规模和覆盖范围,例如涵盖更多种类的药物和更复杂的咨询场景。原创 2025-01-08 09:53:33 · 978 阅读 · 0 评论 -
AI与药学:ChatGPT在抗感染治疗中的应用与挑战
随着LLM的快速发展,未来生成式人工智能在医疗中的应用前景广阔。然而,为了确保其应用的安全性和有效性,医疗界需要加强跨学科合作,特别是人工智能与医学领域的深度融合。本文强调,具有人工智能与专业医学知识的临床医生将在理解这些技术对患者护理的影响中起到至关重要的作用。总之,尽管ChatGPT在抗感染治疗咨询中的表现具有一定潜力,但其在用药场景中的情境感知、推理能力及一致性方面的不足限制了其在复杂临床环境中的应用。我们建议医疗从业者密切关注这一技术的发展,并持续评估其对临床实践的影响,以确保患者安全。原创 2025-01-07 10:27:34 · 1144 阅读 · 0 评论 -
AI与药学:DrugGPT助力减少英国每年2.37亿次用药错误
由《英国医学杂志》发布的研究估计,英国每年约有2.37亿次用药错误,导致约9800万英镑的经济损失和超过1700人失去生命。研究指出,只有约2%的错误可能导致严重伤害,全科医生的错误最少,而养老院的开药者错误最多。这不仅对医疗系统造成了巨大的经济负担,也使无数患者因此失去生命。造成用药错误的原因多种多样,包括处方、配药和用药过程中的失误。然而,在医疗科技不断革新的背景下,人工智能(AI)的出现为解决这一难题提供了新的可能性。原创 2025-01-07 10:02:01 · 1145 阅读 · 0 评论 -
AI与药学:AI如何管理老年人多药联合用药以减少药物间潜在冲突
随着全球人口老龄化的加剧,老年群体面临着多种慢性疾病的挑战,需要长期依赖药物治疗。然而,随着老年人群中多药联合用药的普遍化,药物相互作用和不当用药的风险也随之增加,给老年患者的健康管理带来了巨大压力。为此,人工智能(AI)在多药联合用药的管理中展现出巨大的潜力,尤其是在减少药物间潜在冲突、提高用药依从性和优化治疗效果方面。本文将探讨AI如何在老年群体中管理多药联合用药,以减少药物间潜在冲突的实际应用和研究成果。原创 2025-01-06 09:41:26 · 1164 阅读 · 0 评论 -
AI药师:AI时代下的家庭药师
AI技术的应用,将推动医疗行业的科技创新,为未来智慧医疗的发展奠定基础。随着AI技术的不断成熟,家庭药师将在未来医疗领域发挥更加重要的作用,成为智慧医疗的未来守护者。AI药师可以通过分析患者的病史、用药记录等信息,为患者提供专业、准确的药物咨询。AI技术的应用,可以有效提高药师的工作效率,使其有更多精力关注患者的病情。AI药师能够为患者提供更加精准、个性化的健康管理服务,有助于提高医疗服务质量,降低医疗风险。AI技术的应用,不仅为家庭药师提供了有力支持,也为智慧医疗的发展注入了新的活力。原创 2025-01-05 15:32:49 · 550 阅读 · 0 评论 -
AI 智能体如何赋能生物医学发现
该构想将 AI 智能体定义为能够进行批判性学习和推理的系统,通过整合 AI 模型、生物医学工具和实验平台,协同工作,从而推动生物医学研究的飞速发展。与传统的 AI 工具不同,Zitnik 团队提出的 AI 智能体并非简单的自动化执行工具,而是具备一定自主性和认知能力的“智能体”。为了应对这些挑战,作者提出了一系列建议,包括构建安全测试环境(沙盒环境)、通过多场景评估测试 AI 智能体的行为、依据伦理规范和安全指南进行约束、加强错误管理和治理,以及建立多学科协作的非盈利机构来制定伦理与技术标准。原创 2025-01-04 21:58:43 · 1288 阅读 · 0 评论 -
人工智能与药师职业发展:药师还能找到工作吗?
随着人工智能(AI)技术的迅猛发展,越来越多的行业开始引入AI,以提高效率和降低成本。药学领域也不例外,AI在药物开发、药品制造、医疗服务等方面展现出了巨大的潜力。然而,随着AI技术的不断成熟和应用,许多人开始担忧:在AI的影响下,药师还能继续找到工作吗?原创 2025-01-03 09:27:32 · 1259 阅读 · 0 评论 -
数智药学:信息药师向AI药师的进化
在过去的几十年里,药学行业经历了多次变革。从最初的药物制备和分发,到现代的临床药学与药物信息服务,药学工作者的角色不断拓展,尤其是在信息技术日益发展的背景下,药学领域的“信息药师”应运而生。而如今,随着人工智能(AI)技术的迅速发展,我们正站在一个新的转型关口——从信息药师到AI药师的跨越。“信息药师”通常指那些专注于药学信息的收集、整理、分析和传播的专业人员。他们的主要任务是提供最新的药物信息、解决临床问题、指导药物治疗方案以及参与药物管理。在传统的药学实践中,药师不仅需要拥有扎实的药学基础,还要不断掌握原创 2025-01-02 09:44:41 · 1572 阅读 · 0 评论 -
AI与药学 | PharmacyGPT: AI 赋能精准 ICU 药物治疗
这篇文献介绍了一个名为 PharmacyGPT 的创新框架,首次尝试利用大语言模型(LLMs)如 GPT-4 来模拟 ICU 临床药剂师的角色,通过处理真实患者数据,探索其在生成可解释的患者集群、预测患者预后(如死亡率和 APACHE II 评分)以及制定用药计划方面的能力。总之,该文献为 LLMs 在药学领域的应用开辟了新方向,强调了人机协同的重要性,并为未来实现更智能、更个性化的药物治疗管理提供了宝贵的见解和指导。这样,模型可以参考类似患者的用药方案,生成更符合当前患者情况的用药计划。原创 2025-01-01 11:51:43 · 1411 阅读 · 0 评论 -
盘点2024:AI大模型在医疗健康领域的应用
深睿医疗的"SAMI"、联影智能的"uAI影智大模型"、数坤科技的"ShukunGPT"和柏视医疗的"PVmed Zeus"等产品,在影像分割、诊断分析等方面展现出优异性能,显著提升了疾病诊断的准确率和效率。虽然仍面临诸多挑战,但在市场需求、政策支持和技术创新的推动下,2025年,医疗大模型将继续引领医疗健康领域的数字化转型,为人类健康福祉做出更大贡献。全球医疗大模型市场呈现快速增长态势。中医领域的数字化转型加速推进,智谱的"数字中医"和大经中医的"岐黄问道大模型"为传统中医诊疗带来创新解决方案。原创 2024-12-31 20:07:00 · 5430 阅读 · 0 评论 -
2024年回顾:AI大模型在科学研究中的十大应用案例
大语言模型 (LLM) 已迅速成为科学研究的变革力量,彻底改变了科学家处理复杂问题、分析数据和产生新见解的方式。本文重点介绍 2024 年在科学研究中十个案例,展示了 LLM 在各个科学领域的多样化和有影响力的应用。原创 2024-12-31 16:44:29 · 7116 阅读 · 0 评论 -
AI与药学 | 药物发现新利器:AI大模型架起分子结构与适应症的桥梁
利用大语言模型 (LLM) 实现药物分子结构 (以SMILES字符串表示) 与其适应症 (描述药物治疗的疾病或症状) 之间的双向翻译。作者探索了LLM在药物发现领域的应用潜力,特别是针对药物分子与适应症的互译,并进行了初步实验验证。这项研究为AI辅助药物研发开辟了新的方向,有望加速新药发现进程,并最终为患者提供更有效的治疗方案。原创 2024-12-31 09:53:12 · 929 阅读 · 0 评论 -
AI与药学 | AI技术在药品说明书的应用,开启精准用药的新时代
从自动生成、智能翻译到个性化定制、智能查询,再到安全监测、合规检查和智能推荐,AI正以其强大的能力,全面提升药品说明书的质量和效用,让药品信息更加准确、及时、个性化和易于获取。通过AI分析消费者、医生、药剂师的反馈数据(如药品使用后的体验、投诉等),可以及时调整药品说明书中的相关信息,特别是关于药物不良反应、疗效和禁忌症等内容。AI正以其强大的数据处理和学习能力,深度赋能药品说明书的各个环节,从生成、更新到解读、应用,全面提升药品信息的准确性、时效性、个性化和可及性,开启精准用药的新时代。原创 2024-12-31 09:20:04 · 1438 阅读 · 0 评论 -
AI与药学 | AI大模型在用药处方审核的应用:一项跨 12 个临床专科的前瞻性研究
近年来,大型语言模型 (LLM) 在医疗任务中展现出日益强大的能力,本研究旨在探索基于 LLM 的 CDSS 在药物安全领域的应用,特别是其在不同临床专科中识别药物相关问题 (DRP) 的性能,并与人类专家小组进行比较,具有重要的理论和实践意义。研究团队以 GPT-4.0 为基础模型,构建了两个版本的 RAG-LLM 工具,分别代表了 RAG 系统的简单 (版本 1) 和复杂 (版本 2) 设计,并对比了它们在自主模式和协同模式 (与初级药剂师合作) 下的性能。ATC 类别和作用机制;原创 2024-12-29 15:42:37 · 1391 阅读 · 0 评论 -
生成式人工智能在中医药学教育中的应用与挑战
生成式人工智能在中医药学教育中的应用与挑战》这篇文献系统地探讨了以ChatGPT为代表的生成式人工智能(GenAI)在中医药学教育中的应用前景、挑战及对策。首先概述了GenAI在医学教育领域的应用现状,指出其在医学知识传授、临床技能培养、个性化学习、教学辅助等方面的潜力,并已在循证医学、护理、检验医学和医学遗传学等领域得到应用。原创 2024-12-29 10:57:01 · 1145 阅读 · 0 评论 -
AI与药学:ChatGPT与临床培训——药学博士(Pharm-D)学生的看法、担忧和实践
然而,尽管ChatGPT在一些医学考试中表现良好,其在实际临床环境中的准确性、可靠性和实用性仍需深入评估,特别是在药学教育,尤其是临床培训中的应用,尚缺乏充分的研究。本研究首次深入探讨了Pharm-D学生对ChatGPT在临床培训中应用的看法、担忧和实践,为理解AI工具在药学教育中的应用提供了宝贵的见解。5. 应用场景的差异: 研究发现,学生们更倾向于将ChatGPT用于获取信息、评估药物相互作用等相对“简单”的任务,而在制定治疗计划、确定剂量方案等需要复杂临床判断的任务上,ChatGPT的应用相对较少。原创 2024-12-27 14:13:13 · 954 阅读 · 0 评论 -
AI与药学 | ChatGPT 在临床药学中的有效性以及人工智能在药物治疗管理中的作用
ChatGPT 可以协助医疗保健提供者选择和优化患者的药物治疗,通过分析大量医疗数据并结合临床医生的专业知识,提供个性化的药物推荐。ChatGPT 在所有 13 个简单病例中均取得了 100% 的成功率,能够准确识别超过 70% 的相互作用,并提供超过 70% 的正确药物调整建议和全面的药物管理建议。ChatGPT 在识别潜在相互作用和提供合理的管理计划方面表现出色,但在推荐替代药物治疗和具体药物推荐方面存在局限性(例如,未提供具体的剂量建议)。对于重复的病例,用替代病例替换。原创 2024-12-27 12:57:21 · 1826 阅读 · 0 评论 -
诺奖得主David Baker最新Science论文:药学+AI领域迎来新机遇!
这些高亲和力的TNFR1结合蛋白可能成为阻断炎症的候选分子。这对于药理学重要靶标的设计具有重要意义,因为它允许在没有大规模筛选或实验优化的情况下,完全在计算机中设计出高亲和力和特异性的拮抗剂和激动剂。尽管在蛋白质结合蛋白的设计方面取得了进展,但设计的结构与靶标的匹配度通常低于许多天然蛋白质复合物,尤其是对于具有相对平坦和极性表面的蛋白质靶标,如TNFR1,设计工作未能成功。这篇文献展示了通过计算方法设计蛋白质结合分子的巨大潜力,特别是在针对具有挑战性的药理学靶标时,这种方法提供了一种高效、精确的设计途径。原创 2024-12-26 09:43:00 · 413 阅读 · 0 评论 -
DDI-GPT:使用知识图谱增强的大模型对药物相互作用进行可解释的预测
是一篇关于药物相互作用(DDI)预测的研究论文,该研究提出了一个深度学习框架DDI-GPT,它通过结合知识图谱(KGs)和预训练的大型语言模型(LLMs)来预测药物之间的相互作用。DDI-GPT的主要创新在于将知识图谱与大型语言模型相结合,这不仅提升了药物相互作用预测的准确性,还增强了模型的解释性,为药物安全研究提供了强大的工具。未来的研究可以通过整合更多的个体化数据和先进的机器学习技术,进一步优化DDI-GPT的性能,使其在药物相互作用预测领域发挥更大的作用。原创 2024-12-25 12:05:48 · 1357 阅读 · 0 评论 -
生成式AI:药学科普的新引擎
例如,针对某种特定疾病的联合用药方案,AI可以快速生成一篇包含药物作用机制、剂量、注意事项等信息的科普文章,帮助患者更好地理解用药方案,减少用药风险。就像梅奥诊所的研究那样,AI可以根据放射学数据和患者的病史,为药师提供量身定制的用药策略建议,辅助药师进行更准确的用药指导。更重要的是,需要结合患者的实际情况,提供个性化的用药指导,并给予患者必要的心理支持。例如,AI可以分析临床试验结果和上市后不良反应报告,预测新上市药物可能存在的风险,并将最新的研究成果融入科普内容中,确保传播的信息始终处于前沿。原创 2024-12-25 12:03:00 · 883 阅读 · 0 评论 -
评估大语言模型在药物基因组学问答任务中的表现:PGxQA
PGxQA为评估LLM在PGx任务中的表现提供了一个框架,并展示了GPT-4在这一领域的潜力。研究的主要目标是开发和评估一个名为PGxQA的资源,用于评估LLM在回答PGx相关问题时的表现。这篇文献主要介绍了一个名为PGxQA的资源,用于评估大语言模型(LLM)在药物基因组学问答任务中的表现。人工评审结果:GPT-4的回答在准确性、完整性和安全性方面得分较高,但在某些问题上仍存在错误或危险的回答。自动评分:开发了一系列自动评分函数来评估LLM的表现,包括数值评分、信息检索评分和文本相似度评分。原创 2024-12-23 09:22:45 · 500 阅读 · 0 评论 -
智能决策助力药物安全:大模型在临床处方审核中的突破
Development and Testing of a Novel Large Language Model-Based Clinical Decision Support Systems for Medication Safety in 12 Clinical Specialties》介绍了一种新的检索增强生成 (RAG) 框架的开发和评估,该框架利用大语言模型 (LLM) 作为临床决策支持系统 (CDSS),旨在提高 12 个临床专业的用药安全。全自主模式:基于 LLM 的 CDSS 独立运行。原创 2024-12-23 09:20:28 · 763 阅读 · 0 评论 -
数字人技术在药学服务中的应用
在医疗领域,数字人也展现出了巨大的潜力,尤其是在医院药学服务中,数字人正以其独特的优势,重塑药学服务模式,提升患者就医体验,推动药学服务向智能化、个性化方向发展。未来,随着技术的不断进步和应用场景的不断拓展,数字人将在医院药学服务中发挥越来越重要的作用,推动药学服务迈向智能化、个性化的新时代。在医院药学服务中,数字人可以承担多种角色,成为药师的得力助手,为患者提供更便捷、更智能的服务。药品展示: 数字人可以利用虚拟现实技术,构建虚拟药房,向患者展示药品的外观、规格、包装等信息,帮助患者更直观地了解药品。原创 2024-12-20 14:22:14 · 1043 阅读 · 0 评论