交通标志识别

这篇博客探讨了交通标志识别的过程,包括检测和识别两部分。文章指出,尽管现代检测模型如R-CNN系列在某些场景下效果不佳,但通过调整参数或使用级联CNN可以改进小目标检测。重点讨论了IDSIA团队的MCDNN方法,该方法在GTSRB数据集上实现了超过99.46%的识别准确率。博主分享了数据集的预处理、转化和构建LMDB文件的步骤,并介绍了训练卷积神经网络的过程,以及通过数据增广和多列DNN提高识别准确率的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

交通标志识别实际上包括交通标志的检测和识别两个过程,检测是在图像中寻找到感兴趣目标并定位,识别是对感兴趣目标进行分类。现在R-CNN系列、YOLO、SSD能够很好的将检测和分类两个过程融合到一起,并且在PASCAL VOC等数据集上取得了很好的效果,但对像交通标志这种小目标的检测效果并不好。就交通标志检测而言,如果在Faster RCNN的anchor中,将scale调小一点,ratio调下再做训练,是可以很好的检测到图像中尺寸较小的交通标志;也可以训练级联CNN,将目标检测问题转化为分类问题。传统的检测方法中,可以人工设计特征来检测感兴趣目标,例如可以利用交通标志的颜色和形状等信息来检测并定位到交通标志;然后对检测到的标志进行识别或分类,判断它是哪种交通标志。
我们暂时先不考虑检测问题,先做分类实验。利用卷积神经网络来试试交通标志识别的效果如何。
The German Traffic Sign Recognition Benchmark是IJCNN 2011举办的一个图像分类挑战赛,其提供了GTSRB数据集,共包含了43类交通标志,训练样本39209张,测试样本12630张。提供的样本图像中包含了标志区域及其周围10%的区域(这是为采用边缘方法者所考虑),样本图像尺寸范围为15x15到250x250,当然它不一定是正方形。
这里写图片描述
该挑战赛的冠军是IDSIA团队所采用的Multi-column Deep Neural Network即多列深度神经网络的方法来进行交通标志识别,最后在43类交通标志的识别准确率达到了99.46%,超过了人类表现的98.84%。该方法采用了25个具有完全相同网络结构的DNN(实际上是总共9层的卷积神经网络) Paper地址
这25个DNN分别对应了五种输入数据,包括原图像以及原图经过四种不同的预处理后得到的图像共五种;然后每种都采用五个不同的随机网络初始值来训练,得到网络结构和参数相同但训练得到的网络权重不同的DNN模型。
测试时将每张图像做四种预处理得到共五张输入图像,再将每张图象都送入到其对应的五种网络初始值不同的DNN中,然后将求得的共25个分数做平均得到最后的识别结果。
其DNN结构实际上是在三个卷积层后面跟上两个全连接层做分类,输入图像固定尺寸为48x48。GTSRB数据集下载地址如下,分别下载训练集和测试集。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值