大模型专栏主要是汇总了我在学习大模型相关技术期间所做的一些总结和笔记,主要包括以下几个子专栏:
- DeepSeek-R1
- AIGC
- 大模型实践
- Transformer
- 多模态
- 系统
- 视频理解
- 对比学习
- 目标检测
- 目标跟踪
- 图神经网络
大模型专栏汇总了以上所有子专栏的论文,目前暂时先按照不同的技术领域划分子专栏,子专栏之间的内容可能会有交集,不完全是独立的。
为了方便查阅相关模块的内容,故以此文章进行汇总与索引。
一、DeepSeek-R1
主要介绍DeepSeek-R1模型涉及的相关技术原理、方法、部署和相关的开源项目。
博文:
- DeepSeek-R1大模型相关技术原理介绍
- 第1篇:混合专家模型(MoE)
- 第2篇:大模型知识蒸馏(Knowledge Distillation)
- 第3篇:强化学习(Reinforcement Learning, RL)
- 第4篇:本地部署DeepSeek,断网也能畅聊!
- 第5篇:DeepSeek-R1微调指南
- 第6篇:思维链(CoT)
- 第7篇:冷启动
- 第8篇:位置编码介绍(绝对位置编码、RoPE、ALiBi、YaRN)
- 第9篇:MLA(Multi-Head Latent Attention,多头潜在注意力)
- 第10篇:PEFT(参数高效微调——Adapter、Prefix Tuning、LoRA)
- 第11篇:RAG原理介绍和本地部署(DeepSeek+RAGFlow构建个人知识库)
- 第12篇:分词算法Tokenizer(WordPiece,Byte-Pair Encoding (BPE),Byte-level BPE(BBPE))
- 第13篇:归一化方式介绍(BatchNorm, LayerNorm, Instance Norm 和 GroupNorm)
- 第14篇:MoE源码分析(腾讯Hunyuan大模型介绍)
- 跑通复现DeepSeek-R1的Open R1开源项目,介绍相关的技术原理、方法和源码分析
二、AIGC
专栏地址:https://blog.csdn.net/sinat_16020825/category_12822758.html
主要是介绍文生图、图生图、文生视频等相关技术。
博文:
- Stable Diffusion v3.5开源项目介绍
开源项目地址:https://github.com/Donvink/dive-into-stable-diffusion-v3-5
- 技术原理介绍
- Stable Diffusion应用介绍
三、大模型实践
专栏地址:https://blog.csdn.net/sinat_16020825/category_12834983.html
主要介绍一些实践的开源大模型项目。
博文:
四、Transformer
专栏地址:https://blog.csdn.net/sinat_16020825/category_12822715.html
主要介绍Transformer相关的模型结构和应用。
博文:
五、多模态
专栏地址:
https://blog.csdn.net/sinat_16020825/category_12822761.html
主要是介绍多模态大模型相关技术原理和应用。
博文:
- 【CLIP系列】1:CLIP【多模态领域开山之作】
- 【CLIP系列】2:如何用多GPU训练大模型(数据/模型/流水线/张量并行、MoE、混合精度训练、压缩、激活重新计算)
- 【CLIP系列】3:语义分割(LSeg、GroupViT)
- 【CLIP系列】4:目标检测(ViLD、GLIP)
- 【CLIP系列】5:CLIP图像生成——CLIPasso
- 【CLIP系列】6:视频(CLIP4CLIP、Action CLIP)、语音(audio CLIP)及其他(CLIP-ViL、PointCLIP、DepthCLIP)
- 【多模态大模型】系列1:Transformer Encoder——ViLT、ALBEF、VLMO
- 【多模态大模型】系列2:Transformer Encoder-Decoder——BLIP、CoCa、BEITv3
- 【多模态大模型实战】使用LoRA微调Qwen2.5-VL
六、系统
专栏地址:https://blog.csdn.net/sinat_16020825/category_12822756.html
主要是介绍系统相关的论文和技术,例如并行技术等。
博文:
七、视频理解
暂无更新。
八、对比学习
暂无更新。
九、目标检测
专栏地址:https://blog.csdn.net/sinat_16020825/category_12822763.html
主要是介绍目标检测领域相关论文、技术原理和代码分析等。
博文:
- YOLO系列论文综述(从YOLOv1到YOLOv11)
- 【第1篇:概述物体检测算法发展史、YOLO应用领域、评价指标和NMS】
- 【第2篇:YOLO系列论文、代码和主要优缺点汇总】
- 【第3篇:YOLOv1——YOLO的开山之作】
- 【第4篇:YOLOv2——更好、更快、更强】
- 【第5篇:YOLOv3——多尺度预测】
- 【第6篇:YOLOv4——最优速度和精度】
- 【第7篇:YOLOv5——使用Pytorch框架、AutoAnchor、多尺度预训练模型】
- 【第8篇:YOLOv6——更高的并行度、引入量化和蒸馏以提高性能加速推理】
- 【第9篇:YOLOv7——跨尺度特征融合】
- 【第10篇:YOLOv8——集成检测、分割和跟踪能力】
- 【第11篇:YOLO变体——YOLO+Transformers、DAMO、PP、NAS】
- 【第12篇:YOLOv9——可编程梯度信息(PGI)+广义高效层聚合网络(GELAN)】
- 【第13篇:YOLOv10——实时端到端物体检测】
- 【第14篇:YOLOv11——在速度和准确性方面具有无与伦比的性能】
- 【第15篇(完结):讨论和未来展望】
十、目标跟踪
暂无更新。
十一、图神经网络
暂无更新。