关于四元数的终极理解(转载)

本文深入探讨了四元数在描述三维空间中旋转动作的应用,通过实例解析四元数如何简化旋转运算,使之更易于数学表达和计算。文章旨在帮助读者理解四元数模型,提供直观的理解方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我之前也发过一篇别人在知乎上写的四元素的文章,在知乎的点赞量挺高的,也有人收藏了我这篇,说明是认可的。

https://blog.csdn.net/sinat_16643223/article/details/106418785?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522159676796719724846431597%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=159676796719724846431597&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_v1~rank_blog_v1-1-106418785.pc_v1_rank_blog_v1&utm_term=%E5%9B%9B%E5%85%83%E6%95%B0&spm=1018.2118.3001.4187

 

 

 

下面是否可以理解为用四元数的原因就是旋转可以写成矩阵乘的形式?便于数学表达?你再旋转接着外面乘就好了?

摘自:https://blog.csdn.net/zouxu634866/article/details/79657384

关于四元数的终极理解

总被蚊子叮的小旭 2018-03-22 17:41:15 15129 收藏 33

分类专栏: px4

版权

*前言:之前看了好多关于四元数的概念和推导,就是有点搞不懂,今天在总结回顾了一下,一下恍然大悟,现将我的理解写下来,保证你一看就懂
注意:推导过程看书吧,这里重点是将四元数模型化,让你更容易记住和理解。*


一.引出

假如我有一个旋转动作是这样的:
这里写图片描述

即:旋转轴为v,旋转角度为这个60度。那你怎么用数学形式描述呢?这里就可以用四元数表示:
这里写图片描述

然后我有一个向量v,他要做这个旋转,那么旋转后的v‘是什么呢?

这里写图片描述

这里写图片描述

这里写图片描述


最后推荐一个不错的总结博客:这里写图片描述

  • 点赞 7
  • 评论
  • 分享
  • 收藏 33
  • 手机看
  • 已关注
### 四元数在三维空间旋转中的应用 四元数是一种用于描述三维空间中旋转的有效数学工具,其核心优势在于能够避免欧拉角所面临的万向节死锁问题[^1]。通过引入四个实数值 \( q_0, q_1, q_2, q_3 \),单位四元数可以被用来表示任意三维旋转。 #### 如何用四元数实现三维空间中的旋转 假设有一个单位四元数 \( q = (q_0, q_1, q_2, q_3) \),它满足条件 \( q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1 \)。对于一个三维矢量 \( v = (v_x, v_y, v_z) \),可以通过将其扩展为纯虚四元数的形式 \( p = (0, v_x, v_y, v_z) \) 来参与四元数运算。具体而言,旋转后的矢量可通过以下公式获得: \[ p' = qpq^{-1} \] 其中,\( q^{-1} \) 表示四元数的逆,对于单位四元数来说,它的逆等于共轭形式 \( q^{-1} = (q_0, -q_1, -q_2, -q_3) \)。 #### 四元数与旋转矩阵的关系 给定一个单位四元数 \( q = (q_0, q_1, q_2, q_3) \),可以直接构造对应的旋转矩阵(列优先存储),如下所示: ```plaintext | 1 - 2(q_2^2 + q_3^2) 2(q_1q_2 - q_0q_3) 2(q_1q_3 + q_0q_2) | | 2(q_1q_2 + q_0q_3) 1 - 2(q_1^2 + q_3^2) 2(q_2q_3 - q_0q_1) | | 2(q_1q_3 - q_0q_2) 2(q_2q_3 + q_0q_1) 1 - 2(q_1^2 + q_2^2)| ``` 这一关系表明,四元数可以用更少的数据维度(仅需4个参数)来表达相同的旋转效果,相较于传统旋转矩阵所需的9个参数更为高效[^2]。 #### 四元数插值原理 为了平滑地在两个不同姿态之间过渡,通常会采用球面线性插值(Spherical Linear Interpolation, Slerp)。设初始姿态由四元数 \( q_1 \) 描述,目标姿态由四元数 \( q_2 \) 描述,则中间状态的姿态可按时间比例 \( t \in [0, 1] \) 计算得到: \[ q(t) = \frac{\sin((1-t)\theta)}{\sin(\theta)}q_1 + \frac{\sin(t\theta)}{\sin(\theta)}q_2 \] 这里,\( \cos(\theta) = q_1 \cdot q_2 \) 是两个四元数之间的夹角余弦值[^3]。 --- ### 示例代码:基于 Python 的四元数旋转实现 以下是使用 Python 实现的一个简单例子,展示如何利用四元数完成三维空间中的旋转操作。 ```python import numpy as np def quaternion_to_matrix(q): """ 将四元数转换为旋转矩阵 """ qw, qx, qy, qz = q return np.array([ [1 - 2*qy**2 - 2*qz**2, 2*qx*qy - 2*qw*qz, 2*qx*qz + 2*qw*qy], [2*qx*qy + 2*qw*qz, 1 - 2*qx**2 - 2*qz**2, 2*qy*qz - 2*qw*qx], [2*qx*qz - 2*qw*qy, 2*qy*qz + 2*qw*qx, 1 - 2*qx**2 - 2*qy**2] ]) # 定义一个单位四元数 quaternion = np.array([np.cos(np.pi/4), 0, 0, np.sin(np.pi/4)]) # 转换为旋转矩阵 rotation_matrix = quaternion_to_matrix(quaternion) print("Rotation Matrix:\n", rotation_matrix) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值