汐月教育之理解TensorFlow(六)API记录

本文主要介绍了TensorFlow的基础使用,包括断言与布尔检查、图的建立、数学运算、评估指标等核心概念。此外,还详细讲解了神经网络的构建方法,如激活函数的选择和使用,以及张量的基本操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:JUDGE_MENT
邮箱:gao19920804@126.com
CSDN博客:http://blog.csdn.net/sinat_23137713
最后编辑时间:2017.3.12  V1.1
声明:
1)该资料结合官方文档及网上大牛的博客进行撰写,如有参考会在最后列出引用列表。
2)本文仅供学术交流,非商用。如果不小心侵犯了大家的利益,还望海涵,并联系博主删除。
3)转载请注明出处。
4)本文主要是用来记录本人初学Tensorflow时遇到的问题,特此记录下来,因此并不是所有的方法(如安装方法)都会全面介绍。希望后人看到可以引以为鉴,避免走弯路。同时毕竟水平有限,希望有饱含学识之士看到其中的问题之后,可以悉心指出,本人感激不尽。



一. 总览

1.  断言和布尔检查(Asserts and boolean checks)
断言是python中的概念,就是判断一下某些东西是否满足条件,不满足就跳出异常
2.  建立图(Building Graphs)
对图层面的一种操作
3.  常量、序列和随机值(Constants, Sequences, and Random Values)

4. 数学(Math)
基本的算术运算、数学函数、矩阵函数

4. 评估指标(tf.metrics)
metric是度量标准,总看成matrix。


5. 神经网络(Neural Network
这才是我们经常能用到的神经网络的层。


6. 张量转换变形(Tensor Transformations)

6. 开发版代码(tf.contrib)
易变或实验性的代码


二. 神经网络(Neural Network)
1. 激活函数
提供用于神经网络的不同类型的非线性ops,包括平滑的非线性函数(sigmoid,tanh,elu,softplus和softsign),连续但不是每个地方可区分的函数(relu,relu6,crelu和relu_x)和随机正则化(dropout)。
所有激活函数应用于输入分量,并产生与输入张量相同形状的输出张量。
1)tf.nn.embedding_lookup(是tf.gather函数的泛化)
就是根据train_inputs中的id,寻找embeddings中的对应元素。比如,train_inputs=[1,3,5],则找出embeddings中下标为1,3,5的向量组成一个矩阵返回




三. 张量转换(Tensor Transformation)
1. 转换张量中数据类型
tf.string_to_number    tf.to_double    tf.to_float    tf.to_bfloat16    tf.to_int32    tf.to_int64    tf.cast    tf.bitcast    tf.saturate_cast
2. 切片和连结
1) tf.concat(concat_dim, values, name='concat')  沿一维连接张量




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值