构建 RAG 系统日志与反馈平台
命中率 × 响应追踪 × 日志指标 × 版本对比
一、为什么 RAG 系统需要闭环反馈平台?
如果你已经用国产大模型搭建起了一个 RAG 系统,能顺利跑起来、返回答案,恭喜你,完成了第一阶段。
但,真正的挑战是第二阶段:你知道它有多“准”吗?你能找到错在哪里吗?用户说模型回答不好,问题出在生成还是检索?你的新版模型真的比旧版更好吗?
这些问题,其实都在逼着我们回答一件事:
RAG 系统不是“可用”,而是“可控”。
在生产环境中,RAG 系统天然具备两个“黑箱”:
- Retriever 的检索链路:它找了哪些文档,为什么选这些?
- LLM 的输出质量:它如何拼接 prompt?输出是不是“幻觉”?
如果这两个部分都没法被追踪、评估、对比,那你就很难调优,只能靠“玄学”在试错。
🔍 实际场景下,闭环平台要解决这些痛点:
典型问题 | 影响 | 平台需要做什么 |
---|---|---|
用户反馈回答不好,但 |