构建 RAG 系统日志与反馈平台:实现检索命中率追踪 × 模型输出打分 × 多版本对比闭环

构建 RAG 系统日志与反馈平台

命中率 × 响应追踪 × 日志指标 × 版本对比


一、为什么 RAG 系统需要闭环反馈平台?

如果你已经用国产大模型搭建起了一个 RAG 系统,能顺利跑起来、返回答案,恭喜你,完成了第一阶段。

但,真正的挑战是第二阶段:你知道它有多“准”吗?你能找到错在哪里吗?用户说模型回答不好,问题出在生成还是检索?你的新版模型真的比旧版更好吗?

这些问题,其实都在逼着我们回答一件事:

RAG 系统不是“可用”,而是“可控”。

在生产环境中,RAG 系统天然具备两个“黑箱”:

  • Retriever 的检索链路:它找了哪些文档,为什么选这些?
  • LLM 的输出质量:它如何拼接 prompt?输出是不是“幻觉”?

如果这两个部分都没法被追踪、评估、对比,那你就很难调优,只能靠“玄学”在试错。


🔍 实际场景下,闭环平台要解决这些痛点:

典型问题 影响 平台需要做什么
用户反馈回答不好,但
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

观熵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值