【智慧农业 × 国产大模型】智能病虫害识别与作物产量预测工程实践全流程解析
关键词
国产大模型、农业AI、病虫害识别、作物产量预测、图像分类、多模态融合、时序建模、遥感数据、边缘计算、农业大数据、模型轻量化、精细化种植
摘要
随着农业智能化进程加速,传统依赖人力经验的病虫害识别与作物产量评估方式,已无法满足大规模、精细化生产需求。本文基于国产大模型的实际应用案例,深入解析如何构建面向田间场景的“病虫害识别+产量预测”一体化系统。系统涵盖多模态图像采集、时序数据建模、模型推理部署与边缘端优化,结合真实农田数据与工程部署细节,提供一条从数据到决策闭环的农业AI落地路径。
目录
- 项目背景与智慧农业发展趋势
- 系统目标与整体架构设计
- 病虫害图像识别模型构建与部署实践
- 作物产量预测模型的时序建模与融合策略
- 多模态数据采集与标注体系构建
- 模型压缩与边缘部署优化路径
- 实战案例:小麦种植区智能化农情监测平台建设
- 关键工程挑战与优化方案总结
- 拓展方向:遥感融合、区域模型泛化与农技知识联动体系
- 全文总结与行业展望:国产大模型重构农业智能生产力