聚类算法(二)

本文深入探讨了密度聚类与层次聚类两种重要的聚类算法。密度聚类如DBSCAN,无需预设聚类数,通过样本密度确定聚类结构;层次聚类则在不同层次对数据进行划分,形成树形结构。文章还介绍了聚类算法在异常检测等领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

密度聚类

密度聚类假设聚类结构能通过样本分布的紧密程度确定,通常情况下密度聚类算法从样本密度的角度来考察样本之间的可连接性,并基于可连接样本不断扩展聚类 簇以获得最终的聚类结果

DBSCAN

层次聚类

在不同层次对数据进行划分,从而形成树形聚类结构

  • 自底向上
  • 自顶向下

AGNES

聚类算法的应用:

  • 聚类集成:通过对多个聚类学习器进行集成,有效降低聚类假设与真实结构不符,聚类过程中的随机性等因素带来的不利影响。
  • 异常检测:借助聚类或距离计算进行,如将远离所有簇中心的样本作为异常点,或将密度极低处的样本作为异常点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值