
AI大模型
文章平均质量分 93
AI大模型相关的一些学习笔记、思考、问题记录等
rs勿忘初心
刻意练习,享受创造的快乐。公众号:rs勿忘初心
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Dify、n8n、Coze 深度进阶对比:多维度实战洞见
在数字化转型浪潮中,AI 工作流自动化平台正成为企业提升效率的核心驱动力。随着 AI 技术的快速进化,传统自动化正在向智能化迈进,各大平台也在不断推陈出新,以满足日益复杂的业务需求。根据最新行业评测,Dify、n8n 和 Coze 已成为市场关注的三大主流平台,我们将在本文通过全面对比,帮助你精准选型,找到最契合业务发展需求的 AI 自动化工具。原创 2025-07-23 10:56:59 · 728 阅读 · 0 评论 -
AI搜索系统如何测试?和推荐系统的主要区别是啥?
AI搜索系统测试指南 测试AI搜索系统(如语义搜索、智能问答)比传统搜索更复杂,需关注功能、性能及AI特有维度(如相关性、排序逻辑)。 与AI推荐系统相比,两者都需要一定的算法理解、数据验证和指标评估能力,但测试思路、重点、难点不同,工具和验证方式也有差异。原创 2025-06-23 11:36:16 · 997 阅读 · 0 评论 -
如何测试一个非确定性系统?推荐系统测试方案总结
本文系统介绍了AI推荐系统的测试方法论。首先解析了AI推荐系统的核心组成模块,包括数据采集、特征工程、模型训练等。重点提出了测试的八大关键维度:功能性、数据完整性、模型效果、推荐相关性、多样性、性能、反馈闭环和可解释性。针对每个维度详细阐述了具体测试方法,如功能接口测试、数据质量监控、模型验证、人工评估等,并推荐了相关测试工具。文章还探讨了AI推荐系统特有的测试挑战及应对策略,强调要建立多维度、可量化的质量评估体系。最后指出测试AI推荐系统需要多团队协作,理解业务目标和算法逻辑,构建系统化的质量保障框架。原创 2025-06-23 10:02:32 · 938 阅读 · 0 评论 -
大模型时代,软件测试人员还有未来吗?
软件在变化,世界在变化,测试也必须进化。只要你愿意拥抱变化、持续学习,测试永远不会被取代,只会不断升级、不断进化。加油,测试人!原创 2025-06-22 15:36:28 · 1108 阅读 · 0 评论 -
深度学习与AI爱好者的宝库:Coursera与DeepLearning.AI学习平台
Coursera和DeepLearning.AI是AI学习的重要平台。Coursera提供广泛学科课程,合作全球顶尖高校;DeepLearning.AI专注AI技能,强调实战。两者各有优势:Coursera课程丰富,适合灵活学习;DeepLearning.AI系统性强,注重工程实践。推荐学习路径包括吴恩达的深度学习专项课程和生成式AI系列。尽管英语门槛存在,但免费试听和实用内容使它们成为构建AI能力的优质选择,适合从入门到进阶的不同学习者。原创 2025-06-04 11:40:04 · 920 阅读 · 0 评论 -
大模型时代:为什么越来越多系统选择流式请求?
流式请求客户端发起请求之后,不是一次性拿到完整响应,而是服务器一段一段(chunk by chunk)地推数据给你客户端可以边收到边处理实时消费数据流,直到服务器告诉你「结束了」。非流式请求 = 拿快递,一次全拿到流式请求 = 跟人聊微信,几句话几句话地实时到达技巧说明开启流式处理,不一次性拿完整响应按行读取服务器推送的消息判断流式结束的信号每小段内容从这里拿实时.print().flush()保证内容马上在控制台显示,不要等缓冲。原创 2025-04-27 20:33:42 · 784 阅读 · 0 评论 -
备受关注的MCP(模型上下文协议)究竟是什么?
MCP协议通过标准化接口、动态工具发现和实时双向通信,显著降低了AI模型与外部系统集成的复杂度。降低开发门槛:开发者无需为每个API编写定制化集成代码。提升系统灵活性:支持快速接入新数据源或工具,无需重启服务。增强安全性:内置加密和权限控制机制,保障数据隐私。随着AI技术的深入发展,MCP协议有望在智能客服、自动驾驶、医疗诊断等领域成为主流交互标准,推动AI应用向更高效、更智能的方向演进。原创 2025-04-09 10:33:44 · 1017 阅读 · 0 评论 -
Agent交互新体验:AI如何从Chat到Act?
2024年11月29日,大会主题【Agent交互新体验】,以大模型带来的自然语言交互能力为产品创新趋势,以人机交互升级为切入,选择用户日常的生活场景和工作场景,主打端侧大模型交互产品的定位,展示AI原生设备的技术能力。原创 2024-12-03 15:38:06 · 1346 阅读 · 0 评论 -
AI智能体崛起:从“工具”到“助手”的进化之路
AI智能体在跨系统的过程当中,会遇到各种各样的难题,这也是为什么google们的AI智能体在尽可能的图片识别能力,通过屏幕的截图来访问不同的软件和网站。比如说你在ChatGPT的网站上聊天,让它生成旅行的建议,ChatGPT就会给你规划路线,建议游玩的景点,但是不能帮你预定门票和酒店。通过提示 LLM 告诉它现在你是 CEO,现在你是软件工程师,它们合作,进行扩展的对话,以至于如果你告诉它,请开发一个游戏,开发一个多人游戏,它们实际上会花费几分钟编写代码,测试它,迭代它,并最终生成一个出人意料的复杂程序。原创 2024-11-26 11:00:11 · 1303 阅读 · 0 评论 -
人工智能(AI)与机器学习(ML)基础知识
本文为大家介绍一些关于人工智能(Artificial Intelligence, AI)和机器学习(Machine Learning, ML)的基础概念、核心原理以及学习路径,帮助大家更清晰地了解这个领域的框架。人工智能是一个广义的概念,指机器模仿人类智能的能力,例如学习、推理、解决问题、语言理解和视觉感知。机器学习是让机器通过数据学习规律,并能够完成特定任务的技术,无需明确编程。用未标注的数据训练模型,模型自行发现数据中的规律或结构。用带标签的数据训练模型,学习输入与输出的映射关系。原创 2024-11-22 10:34:25 · 1522 阅读 · 0 评论 -
Llama 3.1用了1.6万个英伟达H100 GPU,耗费......
当地时间 2024年 7月 23号,Meta 公司发布了迄今为止最强大的开源 AI 模型 Llama 3.1。该模型不仅规模庞大,性能也堪比最强大的闭源模型。这称得上是开源 AI 领域的一个重要里程碑。Llama 3.1 模型家族总共有三个版本,规模最大的旗舰版本拥有 405B(4050 亿)参数,是近年来最大的开源 AI 模型。其余两个较小版本的参数量分别是 700 亿和 80 亿。原创 2024-08-08 17:56:49 · 2481 阅读 · 0 评论 -
深度解析:大模型开源的真与假
开源大模型和闭源大模型各有其优势和挑战,也不是对立面。在数据隐私、商业应用和社区参与方面,它们展现出不同的特点和潜力。选择更看好哪一种路径,取决于你所重视的因素和目标。无论是开源还是闭源,推动AI技术的发展和应用,共同促进智能时代的到来,是我们作为掌舵者共同的目标。开源项目是为了分享这个世界,那么就可能必然会舍弃掉资源的保密性和私人性,但其在创新速度、透明性、教育和社区参与方面的优势非常明显,我认为瑕不掩瑜。原创 2024-08-08 11:46:46 · 1966 阅读 · 0 评论 -
快速了解GPT-4o和GPT-4区别
在5月14日的OpenAI举行春季发布会上,OpenAI在活动中发布了新旗舰模型“GPT-4o”!据OpenAI首席技术官穆里·穆拉蒂(Muri Murati)介绍,GPT-4o在继承GPT-4强大智能的同时,进一步提升了文本、图像及语音处理能力,为用户带来更加流畅、自然的交互体验,更多详情可点击查看官网(需科学上网)。GPT-4o的“o”代表“omni”,源自拉丁语“omnis”。在英语中“omni”常被用作词根,用来表示“全部”或“所有”的概念。GPT-4o是一个多模态大模型。原创 2024-06-28 10:08:21 · 4750 阅读 · 1 评论 -
大模型时代的APP:AI Agent(智能体)
Agent(代理)一概念起源于哲学,描述了一种拥有欲望、信念、意图以及采取行动能力的实体。具有自主性、反应性、交互性等特征的智能“代理”。大型语言模型(LLMs)的出现为智能代理的进一步发展带来了希望。长期以来,研究者们一直在追求与人类相当、乃至超越人类水平的通用人工智能(Artificial GeneralIntelligence,AGI)。在 1950 年代,Alan Turing 就将「智能」的概念扩展到了人工实体,并提出了著名的图灵测试。这些人工智能实体通常被称为—— Agent(代理)。原创 2024-06-20 16:28:50 · 3272 阅读 · 0 评论 -
大语言模型背景下,NLP从业者前景如何?要换个方向么?
大模型技术的发展,NLP行业短期可能会受强烈冲击,但长期来看未必是坏事,机遇与挑战一直是共存的。不局限于某个领域和技术,事实上一旦我们选择了技术岗,就意味着必须选择做一个终身学习者。ChatGPT这么强,会影响NLPer的就业环境吗 - 知乎。原创 2024-03-20 10:59:23 · 2859 阅读 · 1 评论 -
如何让ChatGPT更懂你?试试Custom Instructions与Memory机制
用简单提示词(prompt)完成复杂操作逻辑,提升 ChatGPT 对话体验。原创 2024-03-13 11:36:47 · 1372 阅读 · 0 评论 -
AI大模型相关产品的数据飞轮如何建设?
用户反馈越多,数据的质量就越高,高质量的数据,能让我们训练出更好的模型,而更好的模型,就意味着产品能够生成更高质量的内容,吸引更多的用户。数据飞轮是基于字节跳动十余年数据驱动实践经验提炼的企业数智化升级新范式,数据飞轮以数据消费为核心驱动,能够帮助企业数据流充分融入业务流,实现数据资产和业务应用相互促进飞轮效应,从而激发员工创造力,增强业务发展动力,提升组织生命力”。数据飞轮,是今年大模型带火的一个典型词汇,通过客户在应用程序中输入的提示词这样的数据反馈,使大模型快速迭代。(老玩家也有对应的方式)原创 2023-11-27 14:54:01 · 5509 阅读 · 0 评论