双线性插值理解与Python实现

本文介绍了一种图像处理中的双线性插值算法,并通过Python实现该算法。该算法通过对图像在x方向和y方向上的线性插值,利用临近像素点计算目标图像的每个像素值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

双线性插值

 

公式就是这么推来的,主要就是在x方向和y方向上都进行线性插值,利用临近点进行计算

在计算的时候利用了几何中心对齐来优化原来的直接缩放

 

__author__ = 'Alex Wang'

import cv2
import time
from math import ceil, floor
import numpy as np

'''
python implementation of bilinear interpolation
'''


def bilinear_interpolation(img, out_dim):
    src_h, src_w, channel = img.shape
    dst_h, dst_w = out_dim[1], out_dim[0]
    if src_h == dst_h and src_w == dst_w:
        return img.copy()
    dst_img = np.zeros((dst_h, dst_w, channel), dtype=np.uint8)
    scale_x, scale_y = float(src_w) / dst_w, float(src_h) / dst_h
    for i in range(channel):
        for dst_y in range(dst_h):
            for dst_x in range(dst_w):

                # find the origin x and y coordinates of dst image x and y
                # use geometric center symmetry
                # if use direct way, src_x = dst_x * scale_x
                src_x = (dst_x + 0.5) * scale_x - 0.5
                src_y = (dst_y + 0.5) * scale_y - 0.5

                # find the coordinates of the points which will be used to compute the interpolation
                src_x0 = int(floor(src_x))
                src_x1 = min(src_x0 + 1, src_w - 1)
                src_y0 = int(floor(src_y))
                src_y1 = min(src_y0 + 1, src_h - 1)

                if src_x0 != src_x1 and src_y1 != src_y0:
                    # calculate the interpolation
                    temp0 = ((src_x1 - src_x) * img[src_y0, src_x0,
                                                    i] + (src_x - src_x0) * img[src_y0, src_x1, i]) / (src_x1 - src_x0)
                    temp1 = (src_x1 - src_x) * img[src_y1, src_x0,
                                                   i] + (src_x - src_x0) * img[src_y1, src_x1, i] / (src_x1 - src_x0)
                    dst_img[dst_y, dst_x, i] = int(
                        (src_y1 - src_y) * temp0 + (src_y - src_y0) * temp1) / (src_y1 - src_y0)



    return dst_img


if __name__ == '__main__':
    img = cv2.imread('bounding_box_and_polygon.png')
    start = time.time()
    dst = bilinear_interpolation(img, (1000, 1000))
    print('cost {} seconds'.format(time.time() - start))
    cv2.imshow('result', dst)
    cv2.waitKey()

References:

https://blog.csdn.net/xbinworld/article/details/65660665

https://blog.csdn.net/wudi_X/article/details/79782832

https://en.wikipedia.org/wiki/Bilinear_interpolation

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值