下面是RAG应用的典型工作流程:
具体步骤如下:
-
输入: 是指LLM系统需要回答的问题。如果不使用RAG,问题直接由LLM回答。
-
索引: 使用RAG时,会先将相关文档分块,为这些块生成嵌入向量,并将它们索引到向量库中。在进行查询时,查询内容也会以相似的方式进行嵌入。
-
检索: 通过比较查询内容与索引向量,找到相关的文档。
-
生成: 将找到的相关文档与原始提示结合作为额外上下文,然后传递给模型进行回应生成,最终形成系统
下面是RAG应用的典型工作流程:
具体步骤如下:
输入: 是指LLM系统需要回答的问题。如果不使用RAG,问题直接由LLM回答。
索引: 使用RAG时,会先将相关文档分块,为这些块生成嵌入向量,并将它们索引到向量库中。在进行查询时,查询内容也会以相似的方式进行嵌入。
检索: 通过比较查询内容与索引向量,找到相关的文档。
生成: 将找到的相关文档与原始提示结合作为额外上下文,然后传递给模型进行回应生成,最终形成系统