说一说语言模型的分类,并举例,比方说decoder only、encoder-only、encoder-decoder,分别列举哪些典型的语言模型

语言模型按照Transformer结构的不同,常见有三类:Encoder-OnlyDecoder-OnlyEncoder-Decoder。下面详细介绍三种结构和代表性模型:

1. Encoder-Only(仅编码器)

  • 结构特点:只包含编码器部分,能够对整段输入进行双向(上下文)建模,非常适合语义理解类任务,如分类、检索、情感分析等。

  • 典型模型

    • BERT(Bidirectional Encoder Representations from Transformers):最经典的encoder-only模型,预训练目标是Masked Language Modeling(MLM)

    • RoBERTa:对BERT预训练改进的版本。

    • ALBERT、DistilBERT、ERNIE、ELECTRA等也属于此类。

2. Decoder-Only(仅解码器)

  • 结构特点:仅包含解码器部分,采用自回归(causal)掩码,只能看到当前位置之前的信息,主要用于生成文本,比如写作、对话、总结等。

  • 典型模型

    • GPT系列(如GPT-2、GPT-3、ChatGPT、GPT-4):典型的decoder-only结构,目标是预测下一个token。

    • Gemini、Gemma等近代大模型也通常采用decoder-only结构。

    • LLaMA、Mistral等也是代表。

3. Encoder-Decoder(编码器-解码器/Seq2Seq)

  • 结构特点:同时包含编码器和解码器。编码器理解输入,解码器生成输出,输入与输出可长度不同,典型应用于翻译、摘要等序列到序列任务。

  • 典型模型

    • T5(Text-to-Text Transfer Transformer):一切任务转化为文本生成,属于encoder-decoder模型。

    • BART(Bidirectional and Auto-Regressive Transformer):结合了BERT和GPT的优势,适用于生成和理解。

    • 原始Transformer(Attention is All You Need):做机器翻译任务的经典encoder-decoder结构。

小结表

分类结构组件代表模型典型任务
Encoder-Only只编码器BERT、RoBERTa、ALBERT分类、检索、理解
Decoder-Only只解码器GPT系列、LLaMA、Gemini续写、对话、生成
Encoder-Decoder编码+解码器T5、BART、原始Transformer翻译、摘要、生成
  • Encoder-only适合提取输入整体语义,常用于需要理解的场景。

  • Decoder-only以生成语言为主,擅长文本生成类任务。

  • Encoder-Decoder可实现输入和输出序列不一样的情况,适合翻译、摘要等序列变换任务。

通过这样分类,可以快速判断某个典型任务更适合用哪类语言模型架构。

为什么说Bert是encoder only的,Bert的双向transformer具体是怎么表现为双向的,那什么又叫单向transformer

BERT被称为“encoder-only”模型,是因为它基于Transformer的编码器模块构建,仅使用了多个堆叠的Transformer编码器层,而不包含解码器部分。Transformer编码器通过多头自注意力机制,可以在编码时同时访问输入序列中所有位置的词,实现对上下文信息的双向建模。

具体来说,BERT的“双向”体现在其自注意力机制中:在对每个词进行编码时,该词的表示会依赖于序列中所有其他词的位置,无论是在它之前还是之后。这种机制不同于传统的单向语言模型(如传统的左到右单向Transformer解码器),后者只能看到当前位置之前的词,无法利用后文信息。BERT的双向自注意力使得模型捕获到了完整的上下文语义

“单向Transformer”指的是仅允许模型在预测下一词时只关注当前位置及其之前的词(即自回归或因果掩码机制),不包含后文信息,这常见于Decoder-only结构如GPT系列。其设计目的是在生成文本时防止模型看到未来信息,从而保证生成的因果一致性。

总结:

  • BERT是encoder-only结构,因为只用Transformer编码器层

  • BERT的双向表现为其自注意力机制可以同时访问序列中任意位置的信息,做到上下文的双向建模。

  • 单向Transformer一般是Decoder-only结构,只能访问当前位置之前的信息,用于自回归生成。

这使得BERT在理解任务(比如文本分类、问答)上非常强,而单向Transformer如GPT更适合文本生成。

以上内容基于多个中文技术博客和教程的解读和解析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医疗AI强化曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值