统计学——Task1

这篇博客介绍了统计学的基础概念,包括样本和总体、方差、标准差、均值、随机变量及其分类。讲解了二项分布、正态分布、期望值(population mean)和随机变量的期望值。重点讨论了大数定律和中心极限定理,以及Z分数在正态分布中的应用,如经验法则(68-95-99.7法则)。还提到了标准分数(Z分数)的计算公式和其在比较不同分布中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

样本和总体(sample and population)

总体方差(the variance of population)(sigma squared)

样本方差(the variance of sample)

标准差(standard deviation)

均值(mean:one measure of central tendency)

方差(variance)

诸方差(代数简化后的方差公式)

 

随机变量(random variable)

离散随机变量(discrete random variable)

 

均匀分布(uniform distribution)

连续概率分布(continuous probability distribution)

概率分布(probability distribution)

 

概率密度函数(probability density function)

 

二项分布(binomial distribution)

二项式系数(binomial coefficient)

阶乘(factorial over)

正态分布(normal distribution)=(Gaussian or the bell curve)

期望(population mean:add up all the outcomes weighted by their frequency)

随机变量的期望值(expected value of a random variable=probability weighted sum)

二项分布的期望值(E(X)=np)

泊松分布(Poisson distribution)

 

大数定律(law of large numbers:simple mean will approach my expected value of the random variable or simple mean will approach my population mean for n approaching infinity)(give a defination:样本量足够大时,样本均值接近期望值;样本均值将收敛于总体均值或随机变量期望值)

 中心极限定理(central lime theorem)

Z-分数(Z-scores )

经验法则(Empirical rule )

正态分布:z score和经验法则

其中以对称的μ为中心,±σ范围的概率是68.3%。也就是说z=(x-μ)/σ在范围(-1,1)内,概率为68.3%。

也就是说z在范围(-1,1)内,概率为68.3%。

所谓的经验法则(Empirical Rule),也成为68-95-99.7法则,即以μ为中心,落在μ±σ的概率为68%,落在μ±2σ的概率为95%,落在μ±3σ的概率为99.7%。

 

标准分数也称Z分数

1.标准分数也称Z分数,是统计学上常用的一种标准化方法。标准分数可以给出数值距离均值的相对位置,用于比较不同分布的变量值。(单选)

2.公式:标准分数Z=(数值-均值)÷标准差

3.结果:标准分数Z越大越好。

经验法则表明:约有68%的数据与平均数的距离在1个标准差之内,约有95%的数据与平均数的距离在2个标准差之内,约有99%的数据与平均数的距离在3个标准差之内。

 

此题最佳求解方法便是用期望:先考虑000-199,共200个数,三位数的数学期望分别是0.5、4.5、4.5,加起来等于9.5。 200*9.5=1900。 最后再考虑200这个数,答案等于1902。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值