样本和总体(sample and population)
总体方差(the variance of population)(sigma squared)
样本方差(the variance of sample)
标准差(standard deviation)
均值(mean:one measure of central tendency)
方差(variance)
诸方差(代数简化后的方差公式)
随机变量(random variable)
离散随机变量(discrete random variable)
均匀分布(uniform distribution)
连续概率分布(continuous probability distribution)
概率分布(probability distribution)
概率密度函数(probability density function)
二项分布(binomial distribution)
二项式系数(binomial coefficient)
阶乘(factorial over)
正态分布(normal distribution)=(Gaussian or the bell curve)
期望(population mean:add up all the outcomes weighted by their frequency)
随机变量的期望值(expected value of a random variable=probability weighted sum)
二项分布的期望值(E(X)=np)
泊松分布(Poisson distribution)
大数定律(law of large numbers:simple mean will approach my expected value of the random variable or simple mean will approach my population mean for n approaching infinity)(give a defination:样本量足够大时,样本均值接近期望值;样本均值将收敛于总体均值或随机变量期望值)
中心极限定理(central lime theorem)
Z-分数(Z-scores )
经验法则(Empirical rule )
正态分布:z score和经验法则
其中以对称的μ为中心,±σ范围的概率是68.3%。也就是说z=(x-μ)/σ在范围(-1,1)内,概率为68.3%。
也就是说z在范围(-1,1)内,概率为68.3%。
所谓的经验法则(Empirical Rule),也成为68-95-99.7法则,即以μ为中心,落在μ±σ的概率为68%,落在μ±2σ的概率为95%,落在μ±3σ的概率为99.7%。
标准分数也称Z分数
1.标准分数也称Z分数,是统计学上常用的一种标准化方法。标准分数可以给出数值距离均值的相对位置,用于比较不同分布的变量值。(单选)
2.公式:标准分数Z=(数值-均值)÷标准差
3.结果:标准分数Z越大越好。
经验法则表明:约有68%的数据与平均数的距离在1个标准差之内,约有95%的数据与平均数的距离在2个标准差之内,约有99%的数据与平均数的距离在3个标准差之内。
此题最佳求解方法便是用期望:先考虑000-199,共200个数,三位数的数学期望分别是0.5、4.5、4.5,加起来等于9.5。 200*9.5=1900。 最后再考虑200这个数,答案等于1902。