深度强化学习中的奖励稀疏问题

本文探讨了深度强化学习中遇到的奖励稀疏问题及其解决方案,包括Reward Shaping(如通过调整奖励来鼓励学习)、Curiosity(内在好奇心模块,通过预测难度来驱动探索)和Curriculum Learning(反向课程生成,逐步复杂化任务)。同时提到Hierarchical Reinforcement Learning(分层强化学习)在处理奖励稀疏问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DRL Lecture 7 – Sparse Reward – notes – Hung-yi Lee

深度强化学习中的奖励稀疏

To solve sparse reward problems, three directions:

1. Reward Shaping

环境有真正的reward,但自己设计额外的reward

Ex: for a child:
Take “Play”, rt+1=1r_{t+1} = 1rt+1=1, rt+100=−100r_{t+100} = -100rt+100=100
Take “Study”, rt+1=−1r_{t+1} = -1rt+1=1, rt+100=100r_{t+100} = 100rt+100

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值