强化学习技巧四:模型训练速度过慢、GPU利用率较低,CPU利用率很低问题总结与分析。

本文分析了PyTorch中GPU利用率低下的原因,包括GPU内存占用率和GPU利用率问题,并提供了解决方案。问题在于模型大小、batch size设置、数据加载线程数(num_workers)及pin_memory的使用。作者发现自己训练过程中的主要慢速原因是频繁的文件IO操作。总结的提速技巧包括增加batch size、优化数据加载线程、启用pin_memory、减少日志IO频率和考虑使用半精度训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.PyTorchGPU利用率较低问题原因:

在服务器端或者本地pc端,

输入nvidia-smi

来观察显卡的GPU内存占用率(Memory-Usage),显卡的GPU利用率(GPU-util),然后采用top来查看CPU的线程数(PID数)和利用率(%CPU)

1.1 GPU内存占用率问题

这是由于模型的大小以及batch size的大小,来影响这个指标。

  • GPU的内存占用率主要是模型的大小,包括网络的宽度,深度,参数量,中间每一层的缓存,都会在内存中开辟空间来进行保存,所以模型本身会占用很大一部分内存。
  • 其次是batch size的大小,也会占用影响内存占用率。batch size设置为128,与设置为256相比,内存占用率是接近于2倍关系。当你batch  size设置为128,占用率为40%的话,设置为256时,此时模型的占用率约等于80%所以在模型结构固定的情况下,尽量将batch size设置大,充分利用GPU的内存。

1.2 GPU利用率问题

       这个是Volatile GPU-Util表示,当没有设置好CPU的线程数时,这个参数是在反复的跳动的,这样停息1-2 秒然后又重复起来。其实是GPU在等待数据从CPU传输过

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值