本文从 RAG 2.0 面临的主要挑战和部分关键技术来展开叙事,还包括了 RAG 的技术升级和关键技术等。
一、Introduction
过去一年可谓是 RAG 元年,检索增强生成技术迅速发展与深刻变革,其创新与应用已深刻重塑了大模型落地的技术范式。站在 2025 年,RAG 不仅突破了早期文本处理的局限,更通过多模态融合、混合检索优化和语义鸿沟跨越等突破,开始在各个行业落地。如果把 2024 之前的 RAG 称为 RAG 1.0,那目前已进入 RAG 2.0 时代。
一个显着的进步是长上下文窗口,这一功能引发了争议,但到年中逐渐平息。很多人觉得长上下窗口就够了,传统的检索和 RAG 会被取代。此外,LLMOps 等架构的成熟使企业和个人能够使用矢量数据库、嵌入 / 重新排名模型、分块工具、Multimodal 技术的快速发展。RAG 方面的 Paper 每周达到几十篇甚至更多。可以说,RAG 经历了野蛮快速生长的 RAG,从 1.0 超快速的进入了 2.0 时代。
RAG 越来越多的应用在企业和生产场景,但是仍面临很多的技术挑战,本文我们从 RAG 2.0 面临的主要挑战和部分关键技术来展开叙事。首先快速过一下 RAG 2.0 的主要问题:
多模态与复杂任务扩展
-
多模态支持不足:当前的 RAG 技术主要针对文本数据,但在处理图像、视频等多模态数据时仍面临挑战。例如,如何有效检索和利用多模态信息仍是一个开放性问题。现有 LLMOps 解决方案大多限于纯文本场景。