朴素贝叶斯:
1.概率基础
联合概率: 包含多个条件,且所有条件同时成立的概率
记作:𝑃(𝐴,𝐵)
条件概率: 就是事件A在另外一个事件B已经发生条件下的发生概率
记作:𝑃(𝐴|𝐵)
特性:P(A1,A2|B) = P(A1|B)P(A2|B)
注意:此条件概率的成立,是由于A1,A2相互独立的结果
2.利用朴素贝叶斯划分文档类型
朴素:特征独立
贝叶斯公式:
注:w为给定文档的特征值(频数统计,预测文档提供),c为文档类别
公式可以理解为:
其中c可以是不同类别
公式分为三部分:
-
𝑃(𝐶):每个文档类别的概率(某文档类别词数/总文档词数)
-
𝑃(𝑊│𝐶):给定类别下特征(被预测文档中出现的词)的概率
-
计算方法:𝑃(𝐹1│𝐶)=𝑁𝑖/𝑁 (训练文档中去计算)
𝑁𝑖为该𝐹1词在C类别所有文档中出现的次数
N为所属类别C下的文档所有词出现的次数和
𝑃(𝐹1,𝐹2,…) 预测文档中每个词的概率
拉普拉斯平滑:
问题:从上面的例子我们得到娱乐概率为0,这是不合理的,如果词频列表里面有很多出现次数都为0,很可能计算结果都为零
解决方法:
加拉普拉斯平滑系数
𝑃(𝐹1│𝐶)=(𝑁𝑖+𝛼)/(𝑁+𝛼𝑚)
𝛼为指定的系数一般为1,m为训练文档中统计出的特征词个数
sklearn朴素贝叶斯的实现API:
sklearn.naive_bayes.MultinomialNB
sklearn.naive_bayes.MultinomalNB(alpha=1.0)
#朴素贝叶斯分类
#alpha:拉普拉斯平滑系数,防止分类时候某类概率为0
3.朴素贝叶斯算法案例
- sklearn20类新闻分类
- 20个新闻组数据集包括了20个主题的18000个新闻组帖子
朴素贝叶斯案例流程 :
1、加载20类新闻数据,并进行分割
2、生成文章特征词(做完特征抽取后,每篇文章变成一个重要性列表)
3、朴素贝叶斯estimator流程进行预估
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
def naviebayes():
"""
朴素贝叶斯进行文本分类
:return: None
"""
news = fetch_20newsgroups(subset='all')#获取数据
# 进行数据分割
x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25)#利用train_test_split
# 进行数据分割,特征值news.data, 目标值news.target, 测试集的大小test_size=0.25
# 对数据集进行特征抽取
tf = TfidfVectorizer()
# 以训练集当中的词的列表进行每篇文章重要性统计['a','b','c','d']
x_train = tf.fit_transform(x_train)
# print(tf.get_feature_names())
x_test = tf.transform(x_test)#根据对之前部分trainData进行fit的整体指标,对测试的数据(testData)使用同样的均值、方差、最大最小值等指标进行转换transform(testData),从而保证train、test处理方式相同。
# 进行朴素贝叶斯算法的预测
mlt = MultinomialNB(alpha=1.0)
print(x_train.toarray())
mlt.fit(x_train, y_train)
y_predict = mlt.predict(x_test)
print("预测的文章类别为:", y_predict)
# 得出准确率
print("准确率为:", mlt.score(x_test, y_test))
print("每个类别的精确率和召回率:", classification_report(y_test, y_predict, target_names=news.target_names))
return None
if __name__ == "__main__":
naviebayes()
运行结果:
优缺点:
优点:
-
朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
-
对缺失数据不太敏感,算法也比较简单,常用于文本分类。
-
分类准确度高,速度快
缺点:
- 需要知道先验概率P(F1,F2,…|C),因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。(如假设了文章中一些词语和另外一些是独立没关系的的)
是在训练集中进行统计的词语,如果有许多词语比较多的文档,就会造成干扰。
分类模型的评估
estimator.score()
一般最常见使用的是准确率,即预测结果正确的百分比
混淆矩阵:
在二分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)
精确率:预测结果为正例样本中真实为正例的比例(查得准)
召回率:真实为正例的样本中预测结果为正例的比例(查的全,对正样本的区分能力)
分类模型评估API:sklearn.metrics.classification_report
sklearn.metrics.classification_report(y_true, y_pred, target_names=None)
y_true:真实目标值
y_pred:估计器预测目标值
target_names:目标类别名称
return:每个类别精确率与召回率
模型的选择与调优
交叉验证
交叉验证: 将拿到的数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。
超参数搜索-网格搜索
通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。
超参数搜索-网格搜API:sklearn.model_selection.GridSearchCV
sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)
对估计器的指定参数值进行详尽搜索
estimator:估计器对象
param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
cv:指定几折交叉验证
fit:输入训练数据
score:准确率
结果分析:
best_score_:在交叉验证中测试的最好结果
best_estimator_:最好的参数模型
cv_results_:每次交叉验证后的测试集准确率结果和训练集准确率结果