Midjourney生成未来城市:城市规划的AI预演
关键词:Midjourney、未来城市、城市规划、AI预演、生成式AI、视觉化工具、城市设计
摘要:本文将带您探索如何通过Midjourney这一生成式AI工具,为未来城市规划提供“虚拟预演”的全新可能。我们将从技术原理讲到实际应用,用通俗易懂的语言解释AI如何辅助城市设计师快速生成、验证和优化未来城市方案,揭示这一技术对传统城市规划流程的革新意义。
背景介绍
目的和范围
当我们谈论“未来城市”时,脑海中可能会浮现出会呼吸的生态建筑、无人驾驶的空中道路、垂直农场覆盖的摩天大楼……但如何将这些想象落地为可执行的规划方案?传统城市规划依赖图纸、模型和经验推导,往往需要数月甚至数年才能验证一个概念。本文将聚焦“Midjourney生成未来城市”这一具体场景,探讨生成式AI如何为城市规划提供“低成本、高效率”的预演工具,覆盖从概念生成到多方案对比的全流程。
预期读者
- 城市规划从业者:想了解AI如何辅助设计的创新方法;
- AI技术爱好者:对生成式AI在垂直领域的应用感兴趣;
- 普通市民:好奇未来城市长什么样,以及AI如何参与我们的生活环境设计。
文档结构概述
本文将按照“概念引入→原理讲解→实战操作→应用场景→未来展望”的逻辑展开,先通过一个故事让读者直观感受Midjourney在城市规划中的作用,再拆解其技术原理,最后结合实际案例演示如何用它生成未来城市方案,并讨论其对行业的影响。
术语表
核心术语定义
- Midjourney:一款基于文本生成图像的生成式AI工具,用户通过输入描述性文本(提示词),AI会生成符合描述的高质量图像。
- 生成式AI:能自主创造新内容(如图像、文本、视频)的人工智能技术,核心是通过大量数据学习后“模仿+创新”。
- 城市规划预演:在实际建设前,通过虚拟手段模拟未来城市的运行状态,验证规划方案的合理性(如交通流畅度、生态友好性)。
相关概念解释
- 提示词工程(Prompt Engineering):通过优化输入给AI的文本描述,引导其生成更符合需求的内容。例如,在生成未来城市时,提示词需要包含“低碳”“垂直绿化”“无人驾驶”等关键元素。
- 多模态生成:AI同时处理文本、图像、3D模型等多种形式的信息,生成更综合的结果(本文主要涉及文本→图像的单模态生成)。
核心概念与联系
故事引入:一位年轻规划师的“AI救星”
2023年,刚毕业的城市规划师小林接到一个棘手任务:为某海滨城市设计“2050年未来城市”方案。传统方法需要先做人口增长预测、交通流量模拟、生态承载力分析,再画图纸、做模型,至少需要3个月。但甲方要求2周内给出3个不同风格的概念方案(科技感、生态友好、人文历史融合),并展示市民参与后的反馈。
小林急得直挠头时,同事推荐了Midjourney:“试试用AI生成虚拟场景!你只需要输入描述,AI就能快速出图,还能根据反馈调整。”于是小林开始尝试:
- 第一次输入:“2050年海滨未来城市,蓝色玻璃摩天大楼,屋顶有垂直农场,海边有无人驾驶游艇,天空有无人机配送,白天,高清晰度”;
- 生成的图很美,但交通节点太密集,小林又输入:“同上,但增加地面绿化带分隔车道,减少建筑密度,加入市民广场”;
- 第三次输入:“加入本地文化元素,建筑风格融合传统骑楼和现代玻璃幕墙”……
最终,小林用Midjourney生成了3套视觉化方案,在市民投票中选出了最受欢迎的“生态+文化”方案,成功通过甲方评审。这个故事里,Midjourney就像一个“虚拟沙盘师”,让规划师能快速“预演”未来城市的可能形态。
核心概念解释(像给小学生讲故事一样)
核心概念一:Midjourney——会“读心”的魔法画笔
想象你有一支魔法画笔,你只要对它说:“画一个有彩虹屋顶、会飞的汽车、种满鲜花的街道的城市”,它就能立刻画出你脑海中的画面。Midjourney就是这样一支“AI魔法画笔”。它的“魔法”来自于学习了互联网上数以亿计的图像和对应的描述文本,就像小朋友学画画时,先看很多画,再听老师讲解“这是房子,这是树”,最后自己试着画。Midjourney学完后,就能根据你输入的文字(提示词),“猜”出你想要的画面并生成。
核心概念二:未来城市——我们梦想中的“理想家园”
未来城市不是“越高科技越好”,而是一个能让居民生活更舒适、环境更友好、资源更高效利用的地方。比如:
- 房子可能“会呼吸”(外墙种满植物,吸收二氧化碳);
- 马路可能“会发电”(用太阳能板铺路);
- 垃圾可能“自己消失”(通过智能分类和高效回收)。
未来城市就像一个“超级社区”,里面的每栋建筑、每条道路、每片绿地都像小朋友的积木一样,被精心设计成最适合大家生活的样子。
核心概念三:AI预演——给未来城市“提前彩排”
我们看电视剧时,演员会先“彩排”,调整动作和台词,正式拍摄才不会出错。AI预演就像给未来城市“提前彩排”:在真正盖房子、修马路之前,用AI生成虚拟的城市画面,甚至模拟人流、车流、能耗等数据,看看哪里可能堵车,哪里的房子晒不到太阳,哪里的绿化不够。这样规划师就能提前调整方案,避免“盖完才发现不好用”的问题。
核心概念之间的关系(用小学生能理解的比喻)
Midjourney、未来城市、AI预演就像三个好朋友,一起合作“造梦”:
- Midjourney是“画家”:未来城市是我们想画的“梦想画卷”,AI预演是“先画草稿”的过程。画家(Midjourney)根据我们的描述(提示词),把未来城市的草稿(虚拟图像)画出来,让我们看看“梦想”长什么样。
- 未来城市是“目标”:就像小朋友想搭一个“城堡积木”,AI预演(提前用图纸画城堡)和Midjourney(用彩笔画城堡)都是为了让最终的城堡更漂亮、更稳固。
- AI预演是“检验员”:画家(Midjourney)画完草稿后,检验员(AI预演)会检查:“这里的马路太窄,可能堵车”“那里的房子太高,挡住了阳光”,然后让画家修改,直到草稿完美,再开始正式搭积木(实际建设)。
核心概念原理和架构的文本示意图
用户输入(提示词) → Midjourney(基于扩散模型的生成式AI) → 生成未来城市图像 → 用于AI预演(验证规划合理性)
Mermaid 流程图
核心算法原理 & 具体操作步骤
Midjourney的“魔法”是怎么实现的?
Midjourney的核心是扩散模型(Diffusion Model),这是一种能生成高质量图像的AI算法。简单来说,它的工作原理就像“给照片加噪→再去噪”的过程:
- 学习阶段:AI先看很多“未来城市”的图片(比如科幻电影里的城市、现有的生态城市照片),同时记录这些图片对应的描述文字(比如“摩天大楼”“垂直农场”)。
- 生成阶段:当用户输入提示词(如“2050年低碳海滨城市”),AI会先“想象”一张全是噪声(像电视雪花)的图片,然后逐步“去噪”——每一步根据提示词调整图片,去掉不相关的噪声,保留符合描述的细节(比如添加玻璃幕墙、垂直农场)。
- 迭代优化:这个“去噪”过程会重复几十次,直到生成一张清晰的未来城市图像。
用Midjourney生成未来城市的具体步骤(保姆级)
现在我们来模拟小林的操作,用Midjourney生成“2050年低碳海滨未来城市”:
步骤1:注册并进入Midjourney
- 访问Midjourney官网(https://www.midjourney.com/),用Discord账号登录(需要先注册Discord)。
- 进入Midjourney的服务器,找到“#general”或“#newbies”频道(新手建议用#newbies)。
步骤2:设计提示词(关键!)
提示词越详细,生成的图像越符合需求。小林的第一次提示词设计:
2050 futuristic coastal city, low-carbon, skyscrapers with vertical farms, self-driving yachts in the sea, drone delivery in the sky, daytime, hyper-detailed, 8k
(翻译:2050年未来海滨城市,低碳,带垂直农场的摩天大楼,海边有无人驾驶游艇,天空有无人机配送,白天,超细节,8K)
步骤3:发送提示词并生成图像
在Discord频道输入 /imagine prompt:
+ 你的提示词(注意空格),点击发送。例如:
/imagine prompt: 2050 futuristic coastal city, low-carbon, skyscrapers with vertical farms, self-driving yachts in the sea, drone delivery in the sky, daytime, hyper-detailed, 8k
步骤4:查看并优化生成结果
生成完成后,Midjourney会返回4张相似但不同的图片,下方有按钮:
- U1-U4:选择第1-4张图片,生成更大的版本;
- V1-V4:基于第1-4张图片的风格,生成新的变化版本;
- 🔄:重新生成(用相同提示词再试一次)。
小林发现第一张图的建筑太密集,于是点击V1(基于第一张图的风格),并添加新的提示词:more green spaces between buildings, wider roads
(建筑间增加绿地,拓宽道路),生成更优化的版本。
步骤5:输出用于预演
生成满意的图像后,小林将图片导入城市规划软件(如ArcGIS),结合人口、交通等数据,模拟市民的出行路线、日照时间、碳排放等指标,验证方案的合理性。
数学模型和公式 & 详细讲解 & 举例说明
扩散模型的核心公式(简化版)
扩散模型的数学原理可以用两个阶段概括:正向扩散(加噪)和逆向扩散(去噪)。
正向扩散(给图像加噪)
假设原始图像为 ( x_0 ),我们逐步向其中添加高斯噪声,得到 ( x_1, x_2, …, x_T )(( T ) 是总步数)。每一步的噪声量由超参数 ( \beta_t )(噪声方差)控制,公式为:
x
t
=
1
−
β
t
x
t
−
1
+
β
t
ϵ
t
−
1
x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}
xt=1−βtxt−1+βtϵt−1
其中 ( \epsilon_{t-1} ) 是随机高斯噪声(类似电视雪花)。随着 ( t ) 增大,( x_t ) 会逐渐变成纯噪声(( x_T \approx \epsilon_T ))。
逆向扩散(从噪声恢复图像)
AI需要学习一个模型 ( f_\theta(x_t, t) )(( \theta ) 是模型参数),它能根据含噪图像 ( x_t ) 和当前步数 ( t ),预测出添加的噪声 ( \epsilon_t )。然后通过逆向步骤恢复原始图像:
x
t
−
1
=
1
1
−
β
t
(
x
t
−
β
t
1
−
α
ˉ
t
f
θ
(
x
t
,
t
)
)
x_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left( x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} f_\theta(x_t, t) \right)
xt−1=1−βt1(xt−1−αˉtβtfθ(xt,t))
其中 ( \bar{\alpha}t = \prod{i=1}^t (1 - \beta_i) ) 是累积噪声系数。
举个例子:假设我们要生成“带垂直农场的摩天大楼”,正向扩散阶段会先给一张空白图像(或随机噪声)逐步加噪,逆向阶段模型会根据提示词“垂直农场”“摩天大楼”,逐步去掉无关噪声(如随机的斑点),保留相关细节(如楼层的绿色植物、玻璃幕墙的反光)。
项目实战:代码实际案例和详细解释说明
注:Midjourney是可视化工具,无需编写代码,但可以通过API与其他规划软件联动。以下是一个用Python调用Midjourney API生成图像,并结合GIS分析的伪代码示例。
开发环境搭建
- 工具:Python 3.8+、Midjourney API(需申请权限)、ArcGIS Pro(城市规划分析软件)。
- 步骤:
- 注册Midjourney并获取API Key;
- 安装Python库:
pip install requests
(用于调用API)、arcgis
(用于GIS分析)。
源代码详细实现和代码解读
import requests
import json
from arcgis.gis import GIS
from arcgis.features import FeatureLayer
# 1. 调用Midjourney API生成未来城市图像
def generate_future_city(prompt, api_key):
url = "https://api.midjourney.com/v1/generate"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {"prompt": prompt}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
image_url = response.json()["image_url"] # 获取生成的图像链接
return image_url
else:
raise Exception(f"生成失败:{response.text}")
# 2. 结合GIS分析图像中的规划合理性
def analyze_urban_plan(image_url, gis_username, gis_password):
# 登录GIS平台
gis = GIS("https://www.arcgis.com", gis_username, gis_password)
# 假设图像已上传为GIS中的“未来城市图层”
future_city_layer = FeatureLayer("未来城市图层的URL")
# 分析指标:建筑密度、绿地覆盖率、道路宽度
density = future_city_layer.query(where="type='建筑'", out_statistics=[{"statisticType": "avg", "onStatisticField": "面积", "outStatisticFieldName": "平均建筑密度"}])
green_coverage = future_city_layer.query(where="type='绿地'", out_statistics=[{"statisticType": "sum", "onStatisticField": "面积", "outStatisticFieldName": "绿地总面积"}])
road_width = future_city_layer.query(where="type='道路'", out_statistics=[{"statisticType": "min", "onStatisticField": "宽度", "outStatisticFieldName": "最小道路宽度"}])
return {
"建筑密度": density,
"绿地覆盖率": green_coverage,
"最小道路宽度": road_width
}
# 主程序
if __name__ == "__main__":
# 配置参数(实际使用时需替换为真实值)
api_key = "your_midjourney_api_key"
gis_username = "your_gis_username"
gis_password = "your_gis_password"
prompt = "2050 futuristic coastal city, low-carbon, skyscrapers with vertical farms, self-driving yachts in the sea, drone delivery in the sky, daytime, hyper-detailed, 8k"
# 生成图像
image_url = generate_future_city(prompt, api_key)
print(f"生成的图像链接:{image_url}")
# 分析规划合理性
analysis_result = analyze_urban_plan(image_url, gis_username, gis_password)
print("规划分析结果:")
print(json.dumps(analysis_result, indent=2))
代码解读与分析
- generate_future_city函数:通过API调用Midjourney,传入提示词后返回生成的图像链接。实际中,Midjourney的API可能需要异步处理(因为生成图像需要时间),这里简化为同步返回。
- analyze_urban_plan函数:将生成的图像导入GIS平台,通过空间分析工具计算建筑密度、绿地覆盖率等指标,验证规划的合理性。例如,如果“最小道路宽度”小于标准值(如6米),说明需要调整提示词(增加“拓宽道路”的描述)。
实际应用场景
1. 概念方案快速验证
传统规划中,一个概念方案的可视化需要设计师手绘或用3D建模软件(如SketchUp),耗时数天。用Midjourney,输入提示词后几分钟就能生成多张风格不同的图像,规划师可以快速比较“科技感”“生态感”“历史感”等不同方向的效果,选择最有潜力的方案深入设计。
2. 公众参与式规划
市民对“未来城市”的想象各不相同。规划部门可以用Midjourney生成多版方案(如“更多公园”“更多商业区”“更多自行车道”),通过线上投票让市民选择,再根据反馈调整提示词生成优化方案。例如,荷兰鹿特丹市曾用类似方法收集市民对“气候适应型城市”的建议,AI生成的方案参与率比传统问卷高3倍。
3. 多学科协作的“共同语言”
城市规划涉及交通、生态、建筑等多个领域专家,他们可能对“未来城市”有不同理解。Midjourney生成的图像是直观的“共同语言”:交通专家看到道路布局,生态专家看到绿化分布,建筑专家看到结构合理性,大家可以基于同一张图讨论问题,提高协作效率。
工具和资源推荐
1. Midjourney使用技巧
- 提示词公式:主体(未来城市)+ 细节(垂直农场、无人驾驶)+ 风格(科幻、写实)+ 质量(8k、超细节)。例如:
2050 sustainable city, vertical gardens on skyscrapers, self-driving pods on streets, cyberpunk style, 8k resolution
。 - 关键词参考:
low-carbon(低碳)
、smart infrastructure(智能设施)
、pedestrian-friendly(步行友好)
、mixed-use(功能混合)
。
2. 辅助工具
- DALL·E 3:OpenAI的文本生成图像工具,适合生成更抽象的未来场景(如“漂浮城市”)。
- Stable Diffusion:开源的生成式AI工具,适合技术人员自定义模型(如训练“中国传统建筑风格”的专项模型)。
- ArcGIS / CityEngine:GIS和3D城市建模软件,可将Midjourney生成的2D图像转化为3D模型,进行更精确的模拟分析。
3. 学习资源
- 官方文档:Midjourney Help Center
- 提示词指南:Midjourney Prompting Guide
- 案例库:Future Cities Archive(收录全球未来城市规划案例)
未来发展趋势与挑战
趋势1:从“图像生成”到“3D/动态模拟”
目前Midjourney主要生成2D图像,未来可能与3D建模工具(如Blender)、游戏引擎(如Unity)结合,生成可交互的3D未来城市模型,甚至模拟一天内的人流变化、四季的生态反应。例如,输入“2050年夏季中午的未来城市”,AI不仅能生成图像,还能模拟此时的温度分布、太阳能板发电量。
趋势2:与城市数据深度融合
未来的AI预演可能接入实时城市数据(如当前人口、交通流量、能耗),生成更“接地气”的未来城市方案。例如,输入“基于XX市2023年人口数据,生成2050年人口增长30%后的低碳城市”,AI会自动考虑人口增长对住房、交通、医疗的需求,避免“空想式”设计。
挑战1:避免“不切实际”的生成
AI可能生成外观炫酷但不符合物理规律的方案(如“漂浮的摩天大楼”缺乏支撑结构)。未来需要结合工程学知识约束AI的生成逻辑,例如在提示词中加入“符合力学原理”“材料可实现”等限制,或开发“规划合规性检查”插件,自动识别不合理设计。
挑战2:数据偏见与伦理问题
Midjourney的训练数据可能隐含偏见(如更倾向于西方城市风格),导致生成的未来城市“千城一面”,缺乏地域文化特色。解决方法是增加多元数据训练(如输入“融合中国岭南骑楼风格的未来城市”),或由规划师手动调整细节(如添加本地传统纹样)。
总结:学到了什么?
核心概念回顾
- Midjourney:像“魔法画笔”的生成式AI工具,能根据文本提示生成未来城市图像。
- 未来城市:兼顾科技、生态、人文的理想家园,需要通过预演验证合理性。
- AI预演:用AI生成虚拟场景,提前“彩排”未来城市的运行,避免建设后返工。
概念关系回顾
Midjourney是“工具”,未来城市是“目标”,AI预演是“过程”。三者结合后,城市规划从“经验主导”变为“数据+想象”驱动,让未来城市更贴近居民需求。
思考题:动动小脑筋
-
如果你是城市规划师,想生成一个“适合老年人居住的未来社区”,你会在提示词中加入哪些关键描述?(例如:“慢行道”“社区医疗站”“阳光充足的活动中心”)
-
AI生成的未来城市图像很美,但可能忽略某些现实问题(如台风对海滨城市的影响)。你认为可以通过哪些方法让AI预演更“现实”?(提示:结合气象数据、工程规范等约束条件)
-
未来AI可能生成“会呼吸、会生长”的动态城市模型(如建筑外墙的植物随季节变化),你希望这样的城市具备哪些“智能”功能?
附录:常见问题与解答
Q:Midjourney生成的图像能直接用于规划审批吗?
A:目前Midjourney的图像主要用于概念验证和公众沟通,不能直接作为审批依据。规划审批需要详细的工程图纸、数据报告,AI生成的图像更多是“启发工具”。
Q:生成的图像模糊或不符合预期怎么办?
A:调整提示词!例如,图像模糊可能是缺少“hyper-detailed(超细节)”“8k”等关键词;建筑风格不对可能是缺少“传统+现代融合”等描述。多尝试不同的提示词组合,效果会越来越好。
Q:Midjourney需要付费吗?
A:是的,Midjourney有免费试用额度(生成约25张图),之后需要订阅(每月10-60美元)。学生或非营利组织可能有折扣。
扩展阅读 & 参考资料
- 《生成式AI:创造未来》(作者:汤姆·达文波特)—— 讲解生成式AI在各行业的应用。
- 《未来城市:从概念到现实》(作者:本·格林)—— 探讨未来城市的规划逻辑与技术支撑。
- 论文:《Diffusion Models: A Comprehensive Survey》—— 深入理解扩散模型的技术原理。