基于图神经网络的持续学习方法探索:让机器像人类一样"边成长边记忆"
关键词:图神经网络(GNN)、持续学习(CL)、灾难性遗忘、动态图、知识保留
摘要:当你的社交好友列表每天都在变化,当推荐系统需要实时捕捉用户新兴趣,当生物学家不断发现新的蛋白质交互关系——传统图神经网络(GNN)在静态数据上训练的模式已无法满足需求。本文将带你探索"基于图神经网络的持续学习"这一前沿领域,用生活化的比喻拆解技术原理,结合代码实战和应用场景,理解如何让机器像人类一样"边学新技能边保留旧知识"。
背景介绍
目的和范围
想象你有一个"社交关系分析助手":它不仅能分析你当前的好友圈,还能随着你不断添加新好友、建立新联系,持续更新对社交模式的理解,同时不忘记过去的分析经验。这种能力正是"基于图神经网络的持续学习"(GNN-CL)要解决的问题。本文将覆盖从核心概念到实战应用的全链路知识,帮助读者理解:
- 传统GNN在动态场景中的局限性
- 持续学习如何解决"