双重稳健估计的原理
双重稳健估计(Double Robust Estimator, DR Estimator)是结合倾向得分模型(Propensity Score Model)和回归模型(Outcome Model)的一种因果效应估计方法。其核心思想是通过同时依赖这两个模型,在其中一个模型正确时,估计仍然能够保持一致性,从而在面对模型误设时提高稳健性。
估计过程的构成:
双重稳健估计量的构成可以分为以下几个主要步骤:
- 倾向得分模型(Propensity Score Model):
- 倾向性得分e(Xi)e(X_i)e(Xi)反映了在给定协变量XiX_iXi的情况下,样本XiX_iXi接受处理的概率,即P(Di=1∣Xi)P(D_i=1|X_i)P(Di=1∣Xi)
- 通过倾向得分模型估计每个个体接受处理的概率 e(Xi)e(X_i)e(Xi)
- 回归模型(Outcome Model)
-
回归模型分别估计处理组和对照组在协变量 XiX_iXi下的潜在结果:
- μ1(Xi)\mu_1(X_i)μ1(Xi):回归模型对处理组(Di=1)(D_i=1)(Di=1)的预测结果
- μ0(Xi)\mu_0(X_i)μ0(Xi):回归模型对对照组(Di=0)(D_i=0)(Di=0)的预测结果
- 加权残差和回归调整:
- 在处理组(Di=1)(D_i=1)(Di=1)中,观测值YiY_iYi与回归预测值μ1(Xi)\mu_1(X_i)μ1(Xi)之间的差异(即残差)需要通过倾向得分进行加权调整,得到Die(Xi)(Yi−μ1(Xi))\frac{D_i}{e(X_i)}(Y_i-\mu_1(X_i))e(Xi)Di(Yi−μ1(Xi))
- 在对照组(Di=0)(D_i=0)(Di=0)中,观测值YiY_iYi与回归预测值μ0(Xi)\mu_0(X_i)μ0(Xi)之间的差异(即残差)需要通过倾向得分进行加权调整,得到1−Di1−e(Xi)(Yi−μ0(Xi))\frac{1-D_i}{1-e(X_i)}(Y_i-\mu_0(X_i))1−e(Xi)1−Di(Yi−μ0(Xi))
- 这两部分合并起来,考虑每个观测点的加权残差,形成一个加权的误差项。
- 最终的双重稳健估计:
- 最终的因果效应估计值通过回归预测差μ1(Xi)−μ0(Xi)\mu_1(X_i)-\mu_0(X_i)μ1(Xi)−μ0(Xi)处理和对照组的期望结果差)和加权残差项的组合来计算。双重稳健估计的公式为:
θ^DR=1n∑i=1n[(μ1(Xi)+Die(Xi)(Yi−μ1(Xi)))−(μ0(Xi)+1−Di1−e(Xi)(Yi−μ0(Xi)))] \hat{\theta}_{DR}=\frac{1}{n}\sum_{i=1}^{n}\bigg[\bigg(\mu_1(X_i)+\frac{D_i}{e(X_i)}(Y_i-\mu_1(X_i))\bigg)-\bigg(\mu_0(X_i)+\frac{1-D_i}{1-e(X_i)}(Y_i-\mu_0(X_i))\bigg)\bigg] θ^DR=n1i=1∑n[(μ1(Xi)+e(Xi)Di(Yi−μ1(Xi)))−(μ0(Xi)+1−e(Xi)1−Di(Yi−μ0(Xi)))]
- 为什么是双重稳健的
- 当μ1(Xi)\mu_1(X_i)μ1(Xi)是准确的,如果倾向性得分的模型是错的,我们也无需担心。因为当μ1(Xi)\mu_1(X_i)μ1(Xi)是准确的时候E[Yi−μ1(Xi)]=0E[Y_i-\mu_1(X_i)]=0E[Yi−μ1(Xi)]=0,因此剩余μ1(Xi)−μ0(Xi)\mu_1(X_i)-\mu_0(X_i)μ1(Xi)−μ0(Xi),转化为回归调整公式。
- 当倾向性得分e(Xi)e(X_i)e(Xi)是准确的,则
E(Y1)^=1n∑i=1n(μ1(Xi)+Die(Xi)(Yi−μ1(Xi)))=1n∑i=1n(μ1(Xi)+DiYie(Xi)−Diμ1(Xi)e(Xi))=1n∑i=1n(DiYie(Xi)−Di−e(Xi)e(Xi)μ1(Xi)) \begin{aligned} \hat{E(Y_1)}&=\frac{1}{n}\sum_{i=1}^{n}\bigg(\mu_1(X_i)+\frac{D_i}{e(X_i)}(Y_i-\mu_1(X_i))\bigg) \\ &= \frac{1}{n}\sum_{i=1}^{n}\bigg(\mu_1(X_i) +\frac{D_iY_i}{e(X_i)} - \frac{D_i\mu_1(X_i)}{e(X_i)}\bigg) \\ &=\frac{1}{n}\sum_{i=1}^{n}\bigg(\frac{D_iY_i}{e(X_i)}-\frac{D_i-e(X_i)}{e(X_i)}\mu_1(X_i)\bigg) \end{aligned} E(Y1)^=n1i=1∑n(μ1(Xi)+e(Xi)Di(Yi−μ1(Xi)))=n1i=1∑n(μ1(Xi)+e(Xi)DiYi−e(Xi)Diμ1(Xi))=n1i=1∑n(e(Xi)DiYi−e(Xi)Di−e(Xi)μ1(Xi))
此时E[Di−e(Xi)]=0E[D_i-e(X_i)]=0E[Di−e(Xi)]=0,剩余项为DiYie(Xi)−(1−Di)Yi1−e(Xi)\frac{D_iY_i}{e(X_i)}-\frac{(1-D_i)Y_i}{1-e(X_i)}e(Xi)DiYi−1−e(Xi)(1−Di)Yi,转化为逆概率加权IPW公式。
双重稳健估计的关键优势:
稳健性:
双重稳健估计的最重要优势之一是其“稳健性”。即使其中一个模型(倾向得分模型或回归模型)是正确的,估计仍然能够保持一致。这意味着,即使其中一个模型不完全准确,双重稳健估计仍然能提供有效的估计。
消除选择偏误:
通过倾向得分模型,双重稳健估计能够对个体的处理选择进行加权调整,从而减少选择偏误(Selection Bias)。即使样本选择有偏,双重稳健估计仍然能够有效控制这些偏差,提供可靠的因果效应估计。
控制协变量的作用:
回归模型通过控制协变量XiX_iXi的影响,能够为处理组和对照组提供期望结果差异的估计。回归模型确保我们能够在控制协变量影响后,正确评估处理效应。
总结
双重稳健估计通过结合倾向得分模型和回归模型,充分利用这两个模型的优势,使得估计在其中一个模型正确时依然能够保持一致性。它的最大优点在于稳健性:只要倾向得分模型或回归模型中任一个正确,估计都会是无偏且一致的,从而有效地解决了因果推断中的选择偏误问题。
这种方法能够更加准确地估计因果效应,并能处理复杂的观测数据和偏倚,使得因果推断在实际应用中更加可靠。