机器学习实战 第一章

本文介绍了机器学习的基础知识,包括机器学习的定义、不同类型如监督、无监督和强化学习,关键术语如特征和标签,以及主要任务如分类和回归。文章还讨论了如何选择合适的算法和开发机器学习应用的步骤,强调理解问题、数据预处理和模型评估的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 什么是机器学习

机器学习(Machine Learning,ML)是人工智能(Artificial Intelligence,AI)的一个分支,它是一种能够让计算机系统从数据中学习并改进的技术。简单来说,机器学习就是让计算机自动从数据中发现规律和模式,从而进行预测、分类、回归等任务,而无需进行明确的编程

机器学习的主要类型包括:

  1. 监督学习(Supervised Learning):这是最常见的机器学习类型。在监督学习中,我们提供数据和对应的标签,也就是说,我们告诉机器我们想要它预测的结果是什么。例如,分类问题(如垃圾邮件检测)和回归问题(如房价预测)都是监督学习的例子
  2. 无监督学习(Unsupervised Learning):在无监督学习中,我们只提供数据,而不给出数据的标签或结果。这意味着机器需要从数据中找出潜在的结构或模式。例如,聚类问题(如客户细分)和降维问题(如PCA)都是无监督学习的例子
  3. 半监督学习(Semi-Supervised Learning):半监督学习介于监督学习和无监督学习之间。在这种类型的学习中,我们有一些标记的数据和大量未标记的数据。机器需要结合这两类数据来进行学习
  4. 强化学习(Reinforcement Learning):强化学习是一种通过与环境的交互来学习的方法。在这种方法中,机器通过试错来学习,直到它能够生成一个在特定环境中表现最佳的行动

2 关键术语

机器学习中的关键术语有很多,以鸟类分类为例,以下是一些最常见的术语:

  1. 数据:机器学习的输入,通常是由观察、测量或实验产生的,如通过相关感应器得到的鸟类的体重、翼展、后背颜色等的具体数值

  2. 特征:数据的一个属性或属性的集合,是用于描述数据的有意义的数据点,如鸟类的体重、翼展、后背颜色就是具体数据的三种特征

  3. 标签/目标变量:在监督学习中,数据集通常包含特征和标签。标签指的是数据的预期输出或结果,如通过特征预测的鸟种类

  4. 训练集:用于训练模型的数据集

  5. 测试集:用于评估模型性能的独立数据集

3 机器学习的主要任务

机器学习主要任务可以分为以下几个方面:

  1. 分类(Classification):将数据分为不同的类别。
  2. 回归(Regression):预测一个连续数值,比如房价、股票价格等。
  3. 聚类(Clustering):将相似的数据点聚集在一起,分为不同的群组。
  4. 密度估计(Density estimation):用于估计数据点在特定区域内的分布情况

其中前两个属于监督学习,后两个属于非监督学习,可以用以下的表格说明

监督学习用途非监督学习用途
k-近邻算法线性回归K-均值最大期望算法
朴素贝叶斯算法局部加权线性回归DBSCANParzen窗设计
支持向量机Ridge回归
决策树Lasso最小回归系数统计

4 如何选择合适的算法

机器学习任务的算法通常取决于多个因素,包括数据的特性、问题的特性以及可用的计算资源等,主要可以由以下几步选择合适的算法

  1. 理解问题和数据:首先,你需要理解你的问题是什么,以及你的数据是什么样的。这可能涉及到收集和准备数据,理解数据的特性(例如:数据是离散的还是连续的,数据是否有缺失值,特征之间是否存在相关性等)

  2. 选择算法类型:在理解了问题和数据之后,需要选择适合的算法类型。这取决于上一步的问题和数据。例如,如果问题是分类,可能需要使用监督学习算法(如支持向量机、决策树、随机森林、K近邻等)

  3. 评估算法性能:选择好算法之后,你需要评估它的性能。这可能涉及到比较不同算法的性能,或者使用交叉验证等技术来评估单个算法在特定数据集上的性能

  4. 选择最优算法:根据评估结果,你可能需要调整你的算法选择。例如发现某个算法过拟合了,可能需要使用正则化技术或者更复杂的模型来减少过拟合

5 开发机器学习应用程序的步骤

开发机器学习应用程序的步骤通常有以下几个步骤:
开发一个机器学习应用程序涉及多个步骤。下面是一些基本的步骤,可以帮助你开始:

  1. 数据收集:针对一个问题,首先需要收集相关的数据。这可能涉及到在互联网上爬取数据,或者从公开的数据集(如Kaggle)获取数据。

  2. 数据预处理:数据预处理是将数据转化为可以被机器学习算法使用的格式的过程。这可能包括清理数据、数据转换、特征工程等步骤

  3. 选择和训练模型:根据问题的特性,可以选择一个或多个适合的机器学习算法,并训练一个模型来解决,。这可能涉及到选择一个合适的模型架构,定义损失函数,并使用数据来训练模型

  4. 评估模型性能:训练完模型后,需要进行模型性能的评估。可以使用不同的评估指标(如准确率、召回率、F1分数等)来比较模型的表现

  5. 优化模型:如果模型的性能不够好,需要优化模型。这可能涉及到调整模型的参数,或者尝试不同的模型架构

  6. 测试和使用模型:当模型训练好并优化之后,需要先测试一下模型,如对于监督学习需已知算法的目标变量值。之后就可以将模型运用到实际的系统中,并持续监控模型的表现,定期更新和维护模型。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值