
pandas
sky0Lan
打杂的
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
pandas 打印显示详细信息,不显示...
【代码】pandas 打印显示详细信息,不显示...原创 2024-08-13 10:48:39 · 242 阅读 · 0 评论 -
pandas 学习笔记
pandas中最主要的两个数据结构:Series、DataFrameSeries一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。import pandas as pdobj = pd.Series([4, 7, -5, 3])obj"""输出0 41 72 -53 3dtype: int64"""Series 的字符串表现形式为:索引在左边,值在右边。由于我们没有为数据指定索引,会自动创.原创 2022-04-19 11:38:08 · 1206 阅读 · 0 评论 -
pandas 问题记录
data = [{"编号": ser, "MAC": mac} for ser, mac in enumerate(macs, start=1)]# [{'编号': 1, 'MAC': '220101test'},...]df = pd.DataFrame(data)df.to_excel('220101xx.xlsx', sheet_name='shett1', index=False)设置 index 为 False 时候,默认为 True,保存为excel时候,不会保存第一列的编号.原创 2022-03-07 15:03:10 · 326 阅读 · 0 评论 -
pandas读取excel数据问题记录
处理如下一个表格,前3行为版本信息,从第4行开始为物料详细信息。import pandas as pdxd = pd.ExcelFile(r'xxx.xls')# 读取前3三行 ,用于单独提取版本信息dataframe = pd.read_excel(xd, 'xx_BOM', nrows=3)# 指定带读取的列read_cols = ['序号', '生产类别', '规格型号', '品牌', '互替品牌', '数量', '料号', '类别']f_strip = lambda v: v.st原创 2021-01-14 21:27:08 · 305 阅读 · 1 评论 -
pandas openpyxl BytesIO间使用。
from io import BytesIOimport pandas as pdimport openpyxlcontent = { 'sheet1': [ [1, 'a1', '11-22'], [1, 'a1', '11-33'], [2, 'b1', '22-12'], ], 'sheet2': [ [1, 'a1', '11-22'], [1, 'a1', '33-33'], [2, 'b1', '02-12'], ]}columns = ['序号',原创 2021-01-08 19:35:45 · 1452 阅读 · 1 评论 -
pandas excel对特定列进行填充
import pandas as pdimport numpy as npt1 = [0, 1, np.nan, np.nan, np.nan, np.nan]t2 = [0, 2, np.nan, 3, np.nan, np.nan]d = {'X': t1, 'Y': t2, 'Z': t2}df = pd.DataFrame(data=d)print(df)col =['X','Y'] # 需要填充的列df[col] = df[col].ffill() # 设定填充方式print(原创 2021-01-05 13:08:11 · 1308 阅读 · 1 评论 -
pandas 设置设置多层次索引
需求生成如下图所示的表格数据对应的代码import pandas as pdtup = [('34', '21-4000-0003'), ('34', '21-4000-0004'), ('36', '15-1900-0011')]index = pd.MultiIndex.from_tuples(tup, names=['序号', '料号'])print(index)data = ['xx', 'yy', 'zz']s = pd.Series(data, index=index, nam原创 2021-01-04 19:04:34 · 512 阅读 · 1 评论 -
pandas 读取和保存多级表头数据
【代码】pandas 读取和保存多级表头数据。原创 2023-10-30 17:34:09 · 2115 阅读 · 0 评论