医学图像分析中的肿瘤鉴别与冠状动脉钙化评分方法
1. 间变性髓母细胞瘤的鉴别
在医学图像分析领域,间变性髓母细胞瘤(Anaplastic Medulloblastoma)的准确鉴别至关重要。研究者提出了一种特征融合的方法,结合了无监督特征学习(UFL)和有监督的Riesz小波表示,旨在实现更高的分类准确率。
1.1 数据集
研究使用的髓母细胞瘤(MB)数据库来自圣裘德儿童研究医院。该数据库包含10张病理切片,其中5张诊断为间变性MB,5张为非间变性MB。这些切片经过苏木精和伊红(H&E)染色,并使用Aperio扫描仪进行数字化,得到分辨率为80,000×80,000像素的全切片图像(WSI)。为了进行训练,从肿瘤区域随机提取了总共7,500个200×200像素的方形区域,其中间变性和非间变性各3,750个。
1.2 实验流程
整个方法的工作流程如下:
1. 特征计算 :为每张图像计算通过TICA学习的UFL特征和使用Riesz小波学习的有监督特征。
2. 特征融合与分类 :将计算得到的特征组合成一个连接向量,作为标准softmax分类器的输入,进行最终的有监督分类。
graph LR
A[图像] --> B[TICA特征计算]
A --> C[Riesz小波特征计算]
B --> D[特征融合]
C --> D
D --> E[Softmax分类器]
E --> F