动态连续分布式约束优化问题算法研究
1. 引言
在解决动态连续分布式约束优化问题(DC - DCOP)时,传统的顺序贪心动态DCOP算法“Forward”和“Backward”并不适用,因为DC - DCOP中每个时间步的子问题是连续DCOP(C - DCOP),而非离散DCOP。接下来将介绍基于这两个算法改进的适用于DC - DCOP的新算法。
2. DC - DCOP算法
2.1 Forward算法
- 基本思路 :从第一个时间步开始,逐个时间步贪婪地解决DC - DCOP中的每个子问题,即从t = 0到t = h依次解决每个时间步的C - DCOP。在解决每个C - DCOP时,会考虑从时间步t - 1的解切换到时间步t的最优解所产生的切换成本。
- 预处理步骤 :
- 重新构建约束 :对于决策变量$x_i$和随机变量$y_i$之间的每个约束$f_i \in F_Y$,为每个时间步$0 \leq t \leq h$创建新约束:
$F_t^i(x_i) = \int_{D_{y_i}} f_i(x_i, y_i) \cdot p_t^{y_i}(y_i)dy_i$
其中$p_t^{y_i}(\cdot)$是随机变量$y_i$在时间步t的概率密度函数。 - 捕获切换成本 :对于每个决策变量$x \in X$,为每个时间步$0 < t \leq h$创建新的一元约束:
$C_t^x(x_
- 重新构建约束 :对于决策变量$x_i$和随机变量$y_i$之间的每个约束$f_i \in F_Y$,为每个时间步$0 \leq t \leq h$创建新约束: