78、利用协同过滤捕捉人工智能用户偏好作为规范

利用协同过滤捕捉人工智能用户偏好作为规范

在人工智能的应用场景中,准确捕捉用户偏好至关重要。当前的方法在这方面存在不足,我们需要一种新的技术来解决这个问题。

现有相关工作分析

在探讨捕捉用户偏好的新技术之前,我们先来回顾一下相关领域的现有工作,主要涉及隐私与人工智能助手、规范多智能体系统以及人工智能伦理这三个方面。
1. 隐私与人工智能助手方面 :一些研究通过用户调查和众包规范的方式来解决隐私偏好问题。例如,Abdi 等人进行用户调查并从用户的共同意见中获取规范,这有助于确定默认偏好,但无法针对每个用户进行定制。Zhan 等人利用机器学习模型预测隐私规范,准确率达到 70 - 80%,这些方法都基于上下文完整性的概念,即用户的隐私偏好很大程度上取决于上下文。然而,基于上下文进行预测需要了解可能的上下文及其联系,而这种知识依赖于具体领域,假设这种知识总是可用是不现实的。
2. 规范多智能体系统方面 :规范在多智能体系统中被长期研究用于协调智能体。开发规范系统主要有自上而下和自下而上两种方法。自上而下的方法从系统全局视角出发,由中央权威构建和实施规范,旨在利用系统全局知识构建系统级规范系统;自下而上的方法则基于智能体的经验和对环境的看法在智能体层面构建规范。但这两种方法都不完全符合我们的需求,我们设想的方法结合了两者的特点,为每个智能体独立构建规范系统,同时考虑所有智能体偏好的系统全局知识。此外,规范系统的构建时间也有所不同,离线方法在某一时刻构建规范系统,而我们希望采用在线方法,以适应用户偏好随时间的变化和新情况的出现。
3. 人工智能伦理方面 :该领域的研究

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值