Excel Sheet Column

本文介绍了如何在Excel中将列名转换为列号及反之的方法。提供了两种实用的算法:一种是通过迭代的方式将列名转换为列号;另一种则是递归方式将列号转换为列名。这些算法对于理解和实现Excel表格中列号与列名之间的转换非常有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a column title as appear in an Excel sheet, return its corresponding column number.

For example:

A -> 1
B -> 2
C -> 3
...
Z -> 26
AA -> 27
AB -> 28 

思路:26进制,将字符串从左往右遍历,每次得到的字母转为数字,然后加上次的的数并乘以对应的基数。

    public int titleToNumber(String s) {
        int sum = 0;
        for(int i=0;i<s.length();i++){
            sum = s.charAt(i)-'A'+1 + sum*26;
        }
        return sum;
    }

还有一个关联的题目:
Given a positive integer, return its corresponding column title as appear in an Excel sheet.

For example:

1 -> A
2 -> B
3 -> C
...
26 -> Z
27 -> AA
28 -> AB 

思路:就是把每次取余并将数字转为字符后进行字符串拼接
注意:因为是对整数取余,每次取余的结果是从个,十,百位这样来的,所以每次取余所得到的结果应该放在上一次结果的前面。

    public String convertToTitle(int n) {
       String s = "";
        if (n == 0)
            return s;
        while (n > 0) {
            s = (char) ('A' + --n % 26)+s;
            n /= 26;
        }
        return s;
    }
    下面是递归解法,更简洁:
    public String convertToTitle(int n) {
        return n == 0 ? "" : convertToTitle(--n / 26) + (char)('A' + (n % 26));
    }
### Pandas 中 Excel Sheet 的使用指南 #### 创建 DataFrame 并保存至指定的工作表 当需要创建一个新的 Excel 文件并将数据写入特定工作表时,可以利用 `pandas` 库中的 `ExcelWriter` 对象。通过设置参数 `sheet_name` 来指明目标工作表的名字。 ```python import pandas as pd data = {'Column1': [1, 2], 'Column2': ['A', 'B']} df = pd.DataFrame(data) with pd.ExcelWriter('output.xlsx') as writer: df.to_excel(writer, sheet_name='NewSheet') ``` 此段代码会新建一个名为 "output.xlsx" 的文件,并向其中的 "NewSheet" 表单里写入由字典转换而来的 DataFrame 数据[^1]。 #### 读取特定的工作表内容 为了只加载某个具体的工作表的数据进入内存,可以在调用 `pd.read_excel()` 函数的时候传递相应的 `sheet_name` 参数值给它。如果要访问的是第一个默认工作表,则可以直接省略该参数;但如果想要获取其他命名的工作表,则需提供确切名称字符串作为输入。 ```python df_from_sheet = pd.read_excel('input_file.xlsx', sheet_name='TargetSheetName') print(df_from_sheet.head()) ``` 这段脚本展示了如何从现有的 Excel 文档中提取出叫做 "TargetSheetName" 的表格内的前几条记录并打印出来。 #### 合并多个 DataFrames 到同一张工作表的不同区域 有时可能希望把几个不同的 DataFrame 放置在同一份电子表格里的不同位置上显示。这时可以通过调整 `startrow` 和 `startcol` 参数实现定位放置的效果,在同一个 Excel 工作簿内完成多表拼接的任务。 ```python dfs = { 'Table1': pd.DataFrame({'A': range(3), 'B': list('abc')}), 'Table2': pd.DataFrame({'C': range(4), 'D': list('defg')}) } with pd.ExcelWriter('combined_sheets.xlsx') as writer: start_row = 0 for name, frame in dfs.items(): frame.to_excel(writer, sheet_name='CombinedSheets', startrow=start_row) start_row += (len(frame.index) + 3) # 增加一些空白行间隔开各个表格 ``` 上述例子说明了怎样依次将两个独立的 DataFrame 添加到相同的工作表中,并且每添加完一次就跳过一定数量的行数以便区分各部分之间的界限[^2]。 #### 插入新的工作表 对于那些希望通过编程方式动态增加额外工作表的情况来说,除了直接编辑原始 .xlsx 文件外,还可以借助第三方库如 openpyxl 或者 xlwings 实现这一目的。不过这里介绍一种更简便的方法——先构建好所有待加入的新表对应的 DataFrame 集合,再统一写出整个文档即可达到效果。 ```python new_dataframes = [ ('AdditionalSheet1', pd.DataFrame(...)), ('AnotherSheet', pd.DataFrame(...)) ] with pd.ExcelWriter('final_workbook.xlsx', engine='openpyxl') as writer: existing_df.to_excel(writer, sheet_name='OriginalSheet') for new_sheet_name, new_df in new_dataframes: new_df.to_excel(writer, sheet_name=new_sheet_name) ``` 这种方法允许一次性追加工若干个工作表而不必逐个单独处理每一个新增项[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值