医学和生信web APP 平台- Appmatrix(含会员账号)

医学(和生信)web APP 平台- Appmatrix

测试账号:用户名test,密码tset,可访问部分APP
订阅专栏(文章后有用户名和密码)可以查看所有的APP,并可索取APP源代码(每人限3个),以及使用预测模型的API(目前2个)

appmatrix使用shinyproxy将平时所构建的shiny和streamlit医学类应用汇集在一起,实现一站式访问,另外,使用了自己电脑+内网穿透,一定程度上缓解了数据分析类APP消耗计算资源较大的问题。目前仍然有些不够完善,比如登陆后不能成功跳转,需要手动再输入一次网址才能跳转到主页面,但是基本功能都初步能够实现。

以后努力的方向是构建一个医学(和生信)的web APP平台,实现医学类web APP的一站式访问,成为一个探讨包括医学预测模型等在内的各种web APP的交流平台。目前仅收录了个人的制作的一些APP见附件。
在这里插入图片描述
访问地址:appmatrix.cpolar.top, 以后不排除通过自定义的网络地址访问。

平台服务内容:

  1. APP订阅:访问更多的APP,部分免费的APP在一定时间后会专为订阅APP;
  2. 部署APP,将用户APP部署在shinyproxy和宝塔面板服务器上,实现外网访问,支持shiny,streamlit 和fastapi,不支持gradio
  3. APP制作技术咨询,streamlit,shiny,gradio和fastapi制作和部署

附:目前平台收录的APP

  1. 名称:L3 CT 肌体组成检测 描述:使用L3腰椎的CT图片估计全身皮下脂肪、骨骼肌和内脏脂肪的面积,以一千以上CT训练的注意力机制增强的Unet神经网络为核心,构建了群体分析、系列分析、一致性检验和人工检查等四个模块,可以为相关研究收集参数。

  2. 名称:食管癌远处转移PET/C筛查模型-一个预测模型APP样板(免费) 描述:使用SEER数据训练的堆叠聚合模型(逻辑回归+xgboost)预测食管癌远处转移的概率,DCA确定决策阈值(后续临床措施为PET/CT检查,),两者形成预测模型辅助的临床决策系统,
    用于为PET/CT检查筛选高危人群,达到节省费用和提高PET/CT检查阳性率的目的。

  3. 名称: 变量间关系分析(非COX版) 描述:使用Boruta筛选变量+计算SHAP值+立方样条分析,某变量的SHAP值可以反映该变量对结局变量的贡献,对SHAP值的分析可以在传统变量间关系分析的基础上,提供不一样的视角,且因为SHAP计算的是边际贡献,可以得到一个关键点(SHAP值=0)代表改变量对结局变量贡献方向的变化,比如从良好结局转为恶性结局。

  4. 名称:变量间关系分析(COX版) 描述:使用Boruta筛选变量+计算SHAP值+立方样条分析,某变量的SHAP值可以反映该变量对结局变量的贡献,对SHAP值的分析可以在传统变量间关系分析的基础上,提供不一样的视角,且因为SHAP计算的是边际贡献,可以得到一个关键点(SHAP值=0)代表改变量对结局变量贡献方向的变化,比如从良好结局转为恶性结局。

  5. 名称:xgboost超参数调节+后概率校准演示 描述:“辅助临床决策”是目前预测模型的临床定位,其中的一种模式是预测模型提供预测概率,而使用者提供决策阈值,两者共同组成辅助临床决策系统,后概率校准就是改善预测概率的一种措施。本APP使用tidymodels包中提供了两种概率校准的方法实现对客户提供数据的校准。

  6. 临床决策曲线分析(DCA)决定决策阈值 描述:预测概率搭配决策阈值是实现“辅助临床决策”的主要形式之一,而使用DCA产生的决策阈值是目前最推荐的方法,该APP演示DCA如何决定决策阈值。

  7. 用quantreg包实现分位数回归 描述:对于医学小样本来说,中位数回归可能是比平均数回归更好的选择,即更好地拟合数据和预测新的数据。本APP演示quantreg包对分位数回归的实现,可以用到变量间相关性分析(SHAP值法)的分析过程中。

  8. streamlit+ mongoDB构建数据输入/调查问卷 APP 为医学研究中收集单中心或多中心收集数据提供了简单便宜的方式。streamlit构建用户界面用于数据输入,而MongoDB则用于云端存储数据,任何时间地点,只要是登陆APP即可实现数据的录入和存储。在数据收集完成之后,还可以作为队列展示的网站,展示队列的研究成果。

  9. streamlit+plotly 构建空气质量监测仪表盘 描述:仪表盘是web APP的重要类型之一,尝试用ploty展示空气质量监测的仪表盘。

  10. AI辅助统计分析 描述:大语言模型(LLM)+python统计分析API,使用LLM理解用户意图,做出分析规划和形成分析报告,让复杂的分析流程不再困难。目前支持重复测量的方差分析、方差分析、2分组的检验(t和u等)以及逻辑(线性)回归。

  11. 精准化糖尿病预测问答系统 描述: LLM+ 糖尿病COX机器学习API,临床预测模型的另外一种展示形式,使用API获取精准的,可重复的预测结果,使用LLM对结果进行解释,并提供个性化的诊疗建议。

  12. 一个数据预处理的APP 描述: 使用Python代码构建的过滤器、编码器和缺失值处理等功能 ,主要是对列的处理。

  13. 荧光图片处理APP 描述:收纳了转换、合并通道颜色等常规操作

会员账号:csdn,密码ndsc

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医学AppMatrix

文中代码请大家随意

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值