记录新的激活函数和一些tricks

最近看efficientnet代码,发现一些操作不太一样,包括之前看mobv3的代码也是,记录一下这些操作。

 

首先是swish激活函数,efficientnet里面使用了swish激活函数。

函数的过程如下,看代码里面设置beta为1。

对应的代码如下:

# An ordinary implementation of Swish function
class Swish(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(x)


# A memory-efficient implementation of Swish function
class SwishImplementation(torch.autograd.Function):
    @staticmethod
    def forward(ctx, i):
        result = i * torch.sigmoid(i)
        ctx.save_for_backward(i)
        return result

    @staticmethod
    def backward(ctx, grad_output):
        i = ctx.saved_tensors[0]
        sigmoid_i = torch.sigmoid(i)
        return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))

class MemoryEfficientSwish(nn.Module):
    def forward(self, x):
        return SwishImplementation.apply(x)

最简单的实现方式,是直接用torch.sigmoid,让pytorch自己完成反向传播的过程。

比较高级的实现方式是,使用ctx把在前向传播中,把反向传播需要使用的变量save下来,然后在反向传播的时候直接load。

 

不同于efficientnet,mobv3里面使用了hard-swish(hswish),hard-swish使用一个线性变化的relu6来替代了sigmoid function。

mob3 论文中提到,在嵌入式等平台,量化时,sigmoid function开销较大,作者在网络的后半部分阶段替代了relu6,在网络的前半部分使用hsigmoid代替了sigmoid function。

代码如下:

class hswish(nn.Module):
    def forward(self, x):
        out = x * F.relu6(x + 3, inplace=True) / 6
        return out

后面发现pytorch 最新的版本1.8已经对于 hard-swish有了支持,api如下: torch.nn.Hardswish 

 

hsigmoid 函数如下

代码如下:

class hsigmoid(nn.Module):
    def forward(self, x):
        out = F.relu6(x + 3, inplace=True) / 6
        return out

pytorch下文档显示如下:

 

 

 

Silu激活函数,也被称为Swish激活函数,在近年来的深度学习研究中受到了广泛关注。它是一种平滑、非单调的激活函数,定义为 \( f(x) = x \cdot \sigma(x) \),其中 \( \sigma(x) \) 是sigmoid激活函数[^1]。 尽管问题中的引用并未直接提及Silu激活函数,但从相关背景可以推断其重要性以及应用领域。以下是关于Silu激活函数的一些关键点: ### Silu激活函数的研究进展 #### 定义与特性 Silu激活函数通过结合输入信号与其对应的sigmoid值实现自门控机制,这种设计使其能够缓解梯度消失问题并提升模型表达能力。相比ReLU及其变体,Silu具有更丰富的动态范围更好的数值稳定性[^2]。 #### 应用场景 在目标检测框架如YOLO系列中,新型注意力机制(例如CA Attention)通常会配合高效的激活函数一起使用以优化性能。虽然具体提到的是Sigmoid作为最终输出的一部分[^3],但在实际开发过程中,研究人员可能会尝试替换为Silu来进一步提高效果。 #### 论文推荐 以下是一些经典的Silu/Swish激活函数相关论文供参考: - **《Searching for Activation Functions》**: 这篇由Google Brain团队发表的文章首次提出了Swish的概念,并证明了其优越性。 - **《Bag of Tricks for Image Classification with Convolutional Neural Networks》**: 探讨了多种技巧组合如何显著改善卷积神经网络的表现,其中包括采用Swish替代传统激活单元。 - **《Neural Architecture Search with Reinforcement Learning》**: 虽然主要聚焦于架构搜索方法论,但也间接验证了某些特定条件下Swish优于其他选项的事实。 ```python import torch import torch.nn as nn class CustomModel(nn.Module): def __init__(self): super(CustomModel, self).__init__() self.activation = nn.SiLU() # 使用Silu激活函数 def forward(self, x): return self.activation(x) ``` 上述代码片段展示了如何在PyTorch中轻松集成Silu激活函数到定制化模型当中。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值