手把手教你复现顶会论文 —— RandLA-Net (CVPR 2020 Oral)

本文介绍了如何使用Pytorch和Tensorflow开源代码库(RandLA-Net)配合SemanticKITTI数据集进行预处理,包括下载数据、Git克隆代码、安装依赖并编译,为深度学习项目打下基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

代码库:Pytorch 或者 Tensorflow

1. 数据集下载


2. Git Clone 开源代码

  1. 下载代码
git clone https://github.com/tsunghan-wu/RandLA-Net-pytorch.git
  1. 安装依赖
pip install -r requirements.txt

3.编译(注意:这一步很关键,需要解决所有error和warning,不然后面会显示缺少文件)

bash compile_op.sh

3. 数据预处理

。。。。。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值