
Matplotlib
文章平均质量分 94
Small___ming
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Matplotlib学习】Matplotlib 中 x 轴和 y 轴的玩法大全:从基础到高级技巧
自定义刻度格式化函数return f'# 自定义刻度格式化函数 def custom_formatter(x , pos) : if x >= 1000 : return f' {原创 2025-08-27 13:58:54 · 535 阅读 · 0 评论 -
【Matplotlib学习】驾驭画布:Matplotlib 布局方式从入门到精通完全指南
方法适用场景灵活性易用性推荐度plt.plot()快速绘制单个图低极高⭐(仅用于探索)精确控制单个图位置,创建图中图中中⭐⭐(特殊需求)创建标准的多子图网格中高⭐⭐⭐⭐⭐(主力)GridSpec创建跨行/列的不规则复杂网格高中⭐⭐⭐⭐(高级)创建复杂布局(Matplotlib 3.3+)高高⭐⭐⭐⭐⭐(未来趋势)如何选择?只有一个图?使用或。有多个排列整齐的子图?永远首选。子图需要跨行或跨列?使用GridSpec或更直观的。需要在一个角落里放一个插入的小图?使用。原创 2025-08-27 11:51:18 · 782 阅读 · 0 评论 -
【Matplotlib学习】Matplotlib 多子图空间布局完全指南:从基础到高级技巧
手动定义每个轴的位置 [left, bottom, width, height]ax1 = fig.add_axes([0.1, 0.55, 0.35, 0.35]) # 左上ax2 = fig.add_axes([0.55, 0.55, 0.35, 0.35]) # 右上ax3 = fig.add_axes([0.1, 0.1, 0.8, 0.35]) # 底部# 圆形子图# 添加内容plt.show()调整方法调整对象关键参数说明适用场景子图间和图形边距padh_pad。原创 2025-08-27 11:06:02 · 1219 阅读 · 0 评论 -
Matplotlib 可视化大师系列(八):综合篇 - 在一张图中组合多种图表类型
组合多种图表类型是数据可视化的高级技能,可以极大地增强你的数据叙事能力。使用多个Axes对象创建复杂的网格布局使用inset_axes添加细节视图使用**twinx()/twiny()**显示不同量纲的数据遵循设计原则创建专业级的组合图表避免常见陷阱,创建清晰有效的可视化记住,最好的组合图表不是简单地堆砌多种图表类型,而是有目的地选择和组织视觉元素,以最有效的方式传达数据故事。每种添加的图表都应该有明确的目的和价值。至此,我们已经完成了Matplotlib可视化大师系列的全部内容。原创 2025-08-22 14:47:43 · 1225 阅读 · 0 评论 -
Matplotlib 可视化大师系列(七):专属篇 - 绘制误差线、等高线与更多特殊图表
误差线最佳实践明确误差类型:标准误差、标准差、置信区间等保持误差线简洁明了,避免过度装饰对于不对称误差,使用不同长度或样式的误差线等高线图最佳实践选择合适的等高线层级数量,太少会丢失细节,太多会显得混乱使用clabel()添加等高线数值标签考虑使用contourf()填充颜色提高可读性矢量场图最佳实践调整箭头密度和大小,避免过度拥挤使用颜色表示矢量大小,提供额外信息维度对于复杂场,考虑使用流线图(3D绘图注意事项Matplotlib的3D渲染性能有限,不适合大型数据集。原创 2025-08-22 14:43:28 · 798 阅读 · 0 评论 -
Matplotlib 可视化大师系列(六):plt.imshow() - 绘制矩阵与图像的强大工具
创建一些特殊分布的数据Z = np.exp(-X**2 - Y**2) + 0.1 * np.exp(-(X-2)**2 - (Y-2)**2) # 两个高斯分布的和# 1. 线性尺度# 2. 对数尺度 - 适合显示指数变化的数据# 3. 幂律尺度# 4. 自定义数据范围plt.show()核心功能:将二维数组可视化为伪彩色图像关键参数cmap(颜色映射),vminvmax(数据范围),(插值),norm(标准化)高级应用:热力图、科学数据可视化、矩阵分析最佳搭档(颜色条),原创 2025-08-22 14:40:11 · 916 阅读 · 0 评论 -
Matplotlib 可视化大师系列(五):plt.pie() - 展示组成部分的饼图
环形图(Donut Chart)是饼图的一种变体,中间有一个空洞,通常用于显示多个系列或使视觉效果更轻盈。# 数据# 先画一个普通的饼图pctdistance=0.85, # 百分比放远一点wedgeprops=dict(width=0.4, edgecolor='w') # 关键:width设置环的宽度# 在中心画一个白色的圆,使其看起来像环形图# 另一种添加中心文本的方法plt.show()# 数据# 创建一个颜色映射# 自定义百分比显示函数# 同时显示百分比和实际值。原创 2025-08-22 14:37:53 · 627 阅读 · 0 评论 -
Matplotlib 可视化大师系列(四):plt.hist() 与 plt.boxplot() - 洞察数据分布
plt.hist()和是探索数据分布不可或缺的工具。plt.hist(): 揭示整个分布的形状、中心和散布。关注密度和频率。核心参数binsdensitycumulative。: 总结分布的五个关键统计量,高效识别异常值和比较多个分布。核心参数whisnotch, 以及各种*props用于样式控制。掌握这两个函数,你就能从简单的数据描述(如均值、标准差)深入到理解数据的内在结构和特性,这是数据分析和机器学习模型构建的基础。在下一篇文章中,我们将探讨如何展示组成部分,使用plt.pie()来绘制饼图。原创 2025-08-22 14:35:34 · 736 阅读 · 0 评论 -
Matplotlib 可视化大师系列(三):plt.bar() 与 plt.barh() - 清晰对比的柱状图
plt.bar()和plt.barh()是进行数据对比的利器。核心功能: 用矩形的高度/长度表示类别数值的大小。关键参数xy(位置),heightwidth(数值),bottomleft(堆叠),color(样式)。高级应用: 分组柱状图、堆叠柱状图。关键技巧: 添加数值标签、排序数据、保持零基线。掌握柱状图,意味着你能够清晰、准确地展示数据之间的比较关系,这是数据故事中不可或缺的一环。在下一篇文章中,我们将深入探讨数据的分布,使用plt.hist()和来揭示数据背后的统计特性。原创 2025-08-22 14:32:43 · 1076 阅读 · 0 评论 -
Matplotlib 可视化大师系列(二):plt.scatter() - 探索变量关系的散点图
核心功能:展示两个连续变量间的关系,识别模式、聚类和异常值关键参数s(大小),c(颜色),marker(形状),alpha(透明度),cmap(颜色映射)高级应用:通过大小和颜色编码第三、第四个变量,处理大数据集最佳实践:使用透明度避免过度绘制,有意义地使用颜色,添加趋势线掌握散点图意味着你拥有了探索数据关系的第一件强大武器。它是任何数据分析项目的起点,能够为你提供初步的洞察,指导后续的深入分析。在下一篇文章中,我们将学习如何创建清晰的比较图表——柱状图。原创 2025-08-22 14:30:11 · 600 阅读 · 0 评论 -
Matplotlib 可视化大师系列(一):plt.plot() - 绘制折线图的利刃
plt.plot()是 Matplotlib 绘图的基石。它看似简单,却蕴含着巨大的灵活性。核心功能: 给定 (x, y) 坐标,描点连线。两种样式控制(快捷)和**kwargs(精细、推荐)。关键步骤: 提供数据、设置样式、添加标签标题图例、显示图形。掌握了plt.plot(),你就已经打开了 Matplotlib 可视化世界的大门。在下一篇文章中,我们将探索另一个强大的工具——,看看如何用它来揭示变量之间的深层关系。原创 2025-08-22 14:27:09 · 878 阅读 · 0 评论