- 博客(1026)
- 收藏
- 关注

原创 声明 | 从未和“某某算法屋”这个账号合作,曝光抄袭!
ID:前程算法屋 你真牛!!!抄的真棒都不用自己写文案了两个小写字母是我不小心敲错了,你也敲错了吗?太巧了吧!直接用我的图数值都是一样的?我还是只列举了四个,大家注意甄别吧,从来没和这个ID合作过,而且可以看他的发布时间和我的对一下,甚至图片很多都用我的指标的数值都一样,很多发的图和文案啥的都对不上。明眼人可以自行查证一下发布时间就清楚了。再次声明本账号从未和这个账号进行合作,奉劝你一句适可而止吧,你这样做你和你主页说的这些账号有什
2024-12-31 15:48:54
1225
1
原创 基于BiGRU+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
摘要:本文介绍了一个基于BiGRU双向门控循环单元与SHAP可解释性分析的回归预测模型。该模型采用多输入单输出结构,适用于FO工艺数据库分析,输入特征包括膜面积、流速和浓度等参数。代码具有即用性,支持直接替换Excel数据集运行,并提供多种评价指标(R2、MAE等)和可视化结果。模型创新性地结合了深度学习的预测能力和SHAP的可解释性分析方法,通过量化特征贡献实现决策过程透明化。该解决方案适用于MATLAB 2023b环境,附带测试数据集和详细中文注释,特别适合初学者使用。
2025-06-13 22:49:06
133
原创 基于GRU+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
本文介绍了一个基于GRU门控循环单元和SHAP可解释性分析的回归预测模型。该模型采用多输入单输出结构,适用于处理复杂数据的预测任务。SHAP方法基于博弈论,能有效解释模型决策过程,量化各特征对预测结果的影响。代码采用MATLAB编写(需2023b及以上版本),提供多种评价指标(R2、MAE等)和可视化结果,可以直接替换Excel格式的数据集使用。模型结合了深度学习的高精度预测能力和SHAP的解释优势,为复杂系统建模提供了有效工具。代码包含详细中文注释,适合不同水平的用户使用。
2025-06-13 22:47:07
242
原创 基于DNN+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
摘要:本文介绍了一个基于DNN深度神经网络和SHAP可解释性分析的回归预测模型。该模型采用多输入单输出架构,针对FO工艺数据库进行预测(输入特征包括膜面积、流速等5个参数)。代码采用MATLAB 2023b环境开发,提供R2、MAE等多项评价指标,完整注释并附带测试数据集。SHAP分析方法通过计算特征贡献值,实现模型决策过程的可视化解释,有效解决了复杂模型的可解释性问题。代码可直接替换数据使用,适合科研人员快速实现高精度且可解释的预测建模。
2025-06-13 22:46:18
127
原创 基于CNN-BiGRU+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
摘要:本文介绍了一种基于CNN-BiGRU神经网络结合SHAP可解释性分析的多输入单输出回归预测模型。该模型采用FO工艺数据库,输入特征包括膜面积、流量及浓度等参数。代码可直接替换Excel数据集运行,内置多种评价指标(R2、MAE等),提供完整的可视化结果。特别说明该方案将深度学习的高预测精度与SHAP的特征贡献分析能力相结合,实现了预测性能与模型可解释性的统一。代码兼容MATLAB 2023b及以上版本,配有中文注释和测试数据集。
2025-06-13 22:11:40
257
原创 基于CNN-GRU+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
摘要:该研究提出了一种基于CNN-GRU神经网络结合SHAP可解释性分析的多输入单输出回归预测模型。模型采用FO工艺数据库数据,输入特征包括膜面积、流速、浓度等参数。研究利用SHAP方法对模型决策过程进行可视化解释,量化各特征贡献度,实现了预测精度与可解释性的统一。代码提供中文注释,支持R2、MAE等多项评价指标,并附赠测试数据集,适用于MATLAB 2023b及以上环境。该方法为复杂系统建模提供了兼具预测性能和解释能力的解决方案。
2025-06-13 22:09:56
282
原创 基于CNN-BiLSTM+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
摘要:本文介绍了一个基于CNN-BiLSTM混合神经网络并结合SHAP可解释性分析的回归预测模型。该模型采用多输入单输出架构,适用于FO工艺数据库分析,输入特征包括膜面积、流速和浓度等参数。代码采用MATLAB 2023b编写,提供R2、MAE等多种评价指标和可视化结果。模型特点在于通过SHAP方法实现预测结果的可解释性分析,量化各特征对预测的贡献。程序附带测试数据集,可直接替换使用,适合不同水平的用户。文章还提供了代码获取方式和运行环境要求说明。
2025-06-13 22:08:26
88
原创 基于CNN-LSTM+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
摘要:该文介绍了一个基于CNN-LSTM神经网络结合SHAP可解释性分析的回归预测模型。模型采用多输入单输出架构,适用于FO工艺数据库分析,输入特征包括膜面积、流速、浓度等参数。代码提供完整的数据处理和评估流程,包含R2、MAE、MSE等多种评价指标,并生成丰富的可视化结果。该方案将深度学习的高预测精度与SHAP的可解释性相结合,既保障性能又提供决策依据。代码采用MATLAB 2023b环境开发,附带中文注释和测试数据集,适合各类用户直接应用或二次开发。
2025-06-13 22:06:33
209
原创 Matlab 基于Transformer-BiGRU+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一个基于Transformer-BiGRU和NSGAII的多目标优化算法,适用于工艺参数优化等领域。代码采用Transformer编码器分析数据特征和时间序列关系,通过NSGAII寻找三目标(y1极大,y2、y3极小)的最优解集,并生成对应的自变量Pareto解集。包含两个主程序(回归模型和优化算法),提供详细中文注释和测试数据集。运行需要MATLAB 2023b及以上版本,评价指标包括R2、MAE等,并输出多种分析图表。代码质量高,适合初学者直接使用。
2025-06-13 21:33:51
220
原创 Matlab 基于Transformer-BiGRU+NSGAII多目标优化算法的工艺参数优化【四目标】
本文介绍了一个基于Transformer-BiGRU和NSGAII的多目标优化算法代码,适用于工艺参数优化和设计领域。代码包含两个主程序:首先通过Transformer-BiGRU建立多输出回归模型,然后使用NSGAII算法进行多目标优化求解Pareto解集。该方案采用Transformer编码器挖掘数据特征间复杂关系,可提高预测准确性。代码提供完整测试数据集,包含R2、MAE等评价指标和各种可视化图。运行需要MATLAB 2023b及以上版本,代码注释清晰,适合初学者使用。
2025-06-13 21:33:00
117
原创 基于BiLSTM+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
摘要:本文介绍了一种基于BiLSTM神经网络和SHAP可解释性分析的回归预测模型。该模型采用多输入单输出结构,能够处理复杂数据预测任务,同时通过SHAP方法提供直观的模型解释。代码采用MATLAB 2023b环境开发,支持Excel数据格式,包含R2、MAE等评价指标可视化功能。模型在FO工艺数据库上测试效果良好,具有中文注释清晰、即插即用等特点,适合机器学习研究者使用。文末提供了代码获取方式。
2025-06-12 23:54:02
211
原创 基于LSTM+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
摘要: 本文介绍了一种基于LSTM神经网络和SHAP可解释性分析的回归预测模型,适用于多输入单输出数据预测。该模型采用FO工艺数据库,输入特征包含膜面积、流速等参数,输出为回归预测结果。通过SHAP方法实现模型决策过程的可视化解释,量化各特征贡献度,兼顾预测精度与可解释性。代码提供完整的评价指标(R2、MAE等)和可视化结果,支持MATLAB 2023b及以上环境运行,含中文注释和测试数据集,适合科研与工程应用。用户可直接替换Excel格式数据使用。
2025-06-12 23:52:28
207
原创 基于CNN+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
摘要:本文介绍了一个基于CNN神经网络结合SHAP可解释性分析的回归预测模型。该模型采用多输入单输出结构,适用于复杂数据预测场景。代码基于MATLAB2023b开发,输入特征包括膜面积、流速、浓度等参数,输出为预测结果。模型特色在于:1)将深度学习预测能力与SHAP解释性相结合;2)提供R2、MAE、MSE等多种评价指标;3)中文注释清晰,可直接替换Excel格式数据使用。代码附带测试数据集,适合新手快速上手,为复杂系统建模提供了一种预测精度与可解释性兼顾的解决方案。
2025-06-11 23:55:41
337
原创 Matlab 基于NRBO-BP+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一种基于牛顿拉夫逊算法优化的BP神经网络(NRBO-BP)结合NSGAII多目标优化算法的方法,适用于工艺参数优化等领域。该方法先通过NRBO-BP构建变量间的代理模型,再用NSGAII算法进行三目标优化(y1极大化,y2、y3极小化),最终输出Pareto解集。代码包含两个主程序,需先运行回归模型再执行优化算法,并提供详细的运行结果可视化。该方案采用MATLAB 2018b以上环境,包含完整中文注释和测试数据集,适合初学者使用。研究成果已发表于中科院2区TOP期刊。
2025-06-11 23:24:01
299
原创 Matlab 基于Transformer+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一种基于Transformer和NSGAII的多目标优化算法,适用于工艺参数优化等领域。该算法首先通过Transformer建立自变量与因变量的代理模型,再使用NSGAII算法求解多目标优化问题(一个目标最大化,两个目标最小化)。代码包含两个主程序:Transformer回归建模和NSGAII优化。该方法利用Transformer挖掘复杂特征关系,提高预测精度,并提供R2、MAE等多种评价指标。代码附带测试数据集,中文注释清晰,需MATLAB 2023b及以上版本运行。
2025-06-11 23:23:02
377
原创 Matlab 基于Transformer-GRU+NSGAII多目标优化算法的工艺参数优化【三目标】
本文介绍了一个基于Transformer-GRU和NSGAII的多目标优化算法代码,适用于工艺参数优化等领域。代码包含两个主程序:先用Transformer-GRU构建多输出回归模型,再用NSGAII进行三目标优化(y1最大化,y2、y3最小化)。该模型处理5输入3输出数据,提供包括R2、MAE等多项评估指标和可视化结果。代码要求MATLAB 2023b环境,带有详细中文注释和测试数据集,适合新手使用。运行流程清晰,先训练代理模型,再进行多目标优化获取Pareto解集。
2025-06-11 23:22:03
220
原创 Matlab 基于Transformer-BiLSTM+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一个基于Transformer-BiLSTM与NSGAII多目标优化算法的代码方案,适用于工艺参数优化等领域。该方案通过Transformer-BiLSTM建立多输出回归模型,再使用NSGAII算法进行三目标优化(y1极大化,y2、y3极小化)。代码包含两个主程序,先训练代理模型再进行优化,提供完整的预测评估指标(R2、MAE等)和可视化结果。该方案支持5输入3输出数据处理,并附赠测试数据集,MATLAB2023b环境下可直接运行,代码注释清晰,适合初学者使用。
2025-06-11 23:21:00
182
原创 Matlab 基于Transformer-LSTM+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:该代码实现了一种基于Transformer-LSTM与NSGAII的多目标优化算法,适用于工艺参数优化等领域。通过Transformer-LSTM构建多变量代理模型后,利用NSGAII寻找三目标的极值组合(y1最大化,y2、y3最小化),并生成对应的自变量Pareto解集。代码包含两个主程序(模型训练和优化求解),提供完整测试数据集,输出包括多种评估指标和可视化图表(拟合图、误差分析等)。运行环境要求MATLAB 2023b及以上版本,代码有详细中文注释,适合科研应用。(149字)
2025-06-11 23:19:36
261
原创 Matlab 基于Transformer-GRU+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:本文介绍了一个结合Transformer-GRU和NSGAII多目标优化算法的代码方案,适用于工艺参数优化等领域。该方案首先通过Transformer-GRU建立多变量代理模型,然后利用NSGAII寻找最优解集。代码包含两个主程序,分别用于回归建模和多目标优化,配套测试数据集和详细中文注释,支持MATLAB 2023b及以上版本运行。方案提供了完整的评价指标(R2、MAE等)和可视化结果,包括预测拟合图、误差分析图等,适合初学者直接应用于实际数据。
2025-06-11 23:18:40
264
原创 Matlab 基于Transformer-BiLSTM+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:本文介绍了一种基于Transformer-BiLSTM和NSGAII的多目标优化算法代码,适用于工艺参数优化等领域。代码通过Transformer-BiLSTM构建代理模型,结合NSGAII算法寻找最优解集,包含5个输入特征和4个输出目标。运行流程分为两个主程序,提供完整的评价指标和可视化结果。代码要求MATLAB 2023b环境,附带测试数据集和中文注释,适合初学者使用。
2025-06-11 23:17:33
411
原创 基于XGBoost回归+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
(XGBoost+SHAP)基于XGBoost的数据多输入单输出+SHAP可解释性分析的回归预测模型1、在机器学习和深度学习领域,模型复杂度的不断攀升使得决策过程的可解释性成为研究热点。模型如何做出决策、判断依据的合理性以及特征依赖状况等问题,都亟需科学的分析方法来解答。在此背景下,SHAP(SHapley Additive exPlanations)凭借其坚实的理论基础和强大的解释能力应运而生。2、SHAP 构建于博弈论中的 Shapley 值概念,能够为任意机器学习模型提供局部与全局的解释。
2025-06-10 23:13:34
654
原创 基于GRNN回归+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
(GRNN+SHAP)基于广义回归网络的数据多输入单输出+SHAP可解释性分析的回归预测模型1、在机器学习和深度学习领域,模型复杂度的不断攀升使得决策过程的可解释性成为研究热点。模型如何做出决策、判断依据的合理性以及特征依赖状况等问题,都亟需科学的分析方法来解答。在此背景下,SHAP(SHapley Additive exPlanations)凭借其坚实的理论基础和强大的解释能力应运而生。2、SHAP 构建于博弈论中的 Shapley 值概念,能够为任意机器学习模型提供局部与全局的解释。
2025-06-10 23:12:38
395
原创 基于LSSVM回归+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
(LSSVM+SHAP)基于最小二乘向量机的数据多输入单输出+SHAP可解释性分析的回归预测模型1、在机器学习和深度学习领域,模型复杂度的不断攀升使得决策过程的可解释性成为研究热点。模型如何做出决策、判断依据的合理性以及特征依赖状况等问题,都亟需科学的分析方法来解答。在此背景下,SHAP(SHapley Additive exPlanations)凭借其坚实的理论基础和强大的解释能力应运而生。2、SHAP 构建于博弈论中的 Shapley 值概念,能够为任意机器学习模型提供局部与全局的解释。
2025-06-10 23:11:19
718
原创 基于SVM回归+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
(SVM+SHAP)基于支持向量机的数据多输入单输出+SHAP可解释性分析的回归预测模型1、在机器学习和深度学习领域,模型复杂度的不断攀升使得决策过程的可解释性成为研究热点。模型如何做出决策、判断依据的合理性以及特征依赖状况等问题,都亟需科学的分析方法来解答。在此背景下,SHAP(SHapley Additive exPlanations)凭借其坚实的理论基础和强大的解释能力应运而生。2、SHAP 构建于博弈论中的 Shapley 值概念,能够为任意机器学习模型提供局部与全局的解释。
2025-06-10 23:10:20
508
原创 Matlab 基于牛顿拉夫逊算法优化BP神经网络NRBO-BP+NSGAII多目标优化算法的工艺参数优化
基于牛顿拉夫逊算法优化BP神经网络NRBO-BP+NSGAII多目标优化算法,可适用于工艺参数优化、设计等方向。代码简介:1、先经NRBO-BP封装因变量(y1,y2,y3,y4)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过NSGAII寻找y的极值(y1极大;y2、y3、y4极小),并生成对应的x1,x2,x3,x4,x5Pareto解集。2、数据集有5个输入特征,4个输出,通过NSGAII寻求极值,并得到在极值时(y1max,y2min,y3min,y4min)对应的自变量的解集
2025-06-09 23:13:00
229
原创 Matlab 基于粒子群算法优化BP神经网络PSO-BP+NSGAII多目标优化算法的工艺参数优化
摘要: 本文介绍一种基于PSO-BP神经网络和NSGAII的多目标优化算法代码。该算法首先通过PSO-BP构建输入(x1-x5)与输出(y1-y4)的代理模型,再使用NSGAII寻找y1极大值及y2-y4极小值对应的Pareto解集。代码包含两个主程序:先运行PSO-BP回归,再进行NSGAII优化。运行环境需MATLAB 2018b+,提供完整测试数据集和详细中文注释,输出包括回归拟合图、误差分析图等可视化结果,评价指标全面(R2、MAE等)。代码适用于工艺参数优化等领域,适合初学者使用。
2025-06-09 23:11:43
357
原创 基于CNN-LSTM-Attention的锂电池剩余寿命预测 [电池容量提取+锂电池寿命预测]Matlab代码(单变量)
基于CNN-LSTM-Attention的锂电池剩余寿命预测 [电池容量提取+锂电池寿命预测]Matlab代码(单变量)NASA数据集,B0005号电池数据训练,B0006号电池数据测试预测。无需更改代码,双击main直接运行!!!
2025-06-08 23:38:30
324
原创 [原创]基于QPSO-SVR的锂电池剩余寿命预测 [电池容量提取+锂电池寿命预测]Matlab代码(单变量)
[原创]基于QPSO-SVR的锂电池剩余寿命预测 [电池容量提取+锂电池寿命预测]Matlab代码(单变量)NASA数据集,B0005号电池数据训练+测试。【量子粒子群】QPSO优化SVR的c和g!无需更改代码,双击main直接运行!!!1、内含“电池容量提取”和“锂电池寿命预测”两个部分完整代码和NASA的电池数据2、提取NASA数据集的电池容量,此处以以历史容量作为输入,采用迭代预测的方法对后的容量进行预测,本代码采用NASA的B0005号电池数据作为数据集。
2025-06-08 23:24:25
555
原创 基于粒子群算法优化深度极限学习机(PSO-DELM)的数据多变量时序预测 Matlab代码
《基于PSO-DELM的多变量时序预测Matlab代码》 摘要:本文介绍了一套基于粒子群算法优化深度极限学习机(PSO-DELM)的Matlab时序预测代码,适用于多输入单输出的数据预测任务。该代码具有以下特点:1)开箱即用,替换Excel数据集即可运行;2)支持R2、MAE等多种评价指标;3)包含详尽中文注释,适配MATLAB 2018b及以上版本;4)提供测试数据集,特别适合初学者使用。代码还支持定制优化算法添加,并生成丰富的可视化结果。用户可通过文末链接获取完整代码资源。
2025-06-05 23:10:51
181
原创 基于粒子群算法优化深度极限学习机(PSO-DELM)的数据单变量时序预测 Matlab代码
《PSO-DELM时序预测Matlab代码简介》 该代码实现了基于粒子群算法优化的深度极限学习机(PSO-DELM)单变量时序预测。主要特点包括: 开箱即用 - 替换excel数据集即可直接运行 评价指标全面 - 提供R2、MAE、MSE等多项评估结果 可视化丰富 - 包含多种结果展示图表 文档完善 - 中文注释清晰,适合初学者使用 运行环境要求MATLAB 2018b及以上版本,并附带测试数据集。代码可定制添加其他优化算法,满足不同预测需求。
2025-06-05 23:09:58
274
原创 基于遗传算法优化深度极限学习机(GA-DELM)的数据多变量时序预测 Matlab代码
【摘要】基于遗传算法优化深度极限学习机(GA-DELM)的Matlab时序预测代码,支持多输入单输出。该程序已调试完成,可直接替换Excel格式数据集运行。主要特点包括:MATLAB 2018b及以上版本兼容;提供R2、MAE等多项评价指标;含中文注释和测试数据集;支持优化算法定制。适用于多变量时序预测任务,尤其适合初学者使用。代码获取方式见文末链接。(100字)
2025-06-05 23:08:50
125
原创 基于遗传算法优化深度极限学习机(GA-DELM)的数据单变量时序预测 Matlab代码
【摘要】本文介绍了一套基于遗传算法优化深度极限学习机(GA-DELM)的Matlab时序预测代码,适用于单变量时间序列预测(单输入单输出)。该代码已调试完成,用户只需替换Excel格式数据集即可直接运行。支持定制优化算法添加,要求MATLAB 2018b及以上版本运行环境。评价指标全面,包括R2、MAE等,并提供丰富可视化结果。代码具有详细中文注释,附带测试数据集,特别适合科研人员和初学者使用。文末提供获取方式。
2025-06-05 23:06:46
140
原创 基于BiTCN-BiLSTM-Attention的多变量回归预测 Matlab (多输入单输出)
摘要:本文介绍了一个基于BiTCN-BiLSTM-Attention融合模型的多变量回归预测Matlab程序。该程序采用双向时间卷积网络结合双向LSTM和注意力机制,实现多输入单输出预测,数据格式为Excel。程序已调试完成,可直接替换数据集运行,支持优化算法定制。运行环境要求MATLAB 2023b及以上版本,提供R2、MAE等多项评价指标和可视化结果。代码包含中文注释,并附赠测试数据集,适合新手直接使用。文末提供了代码获取方式。
2025-06-05 23:05:48
348
原创 基于遗传算法优化深度极限学习机(GA-DELM)的数据多特征分类预测Matlab代码
《GA-DELM分类预测Matlab代码》 摘要:本文介绍一款基于遗传算法优化深度极限学习机(GA-DELM)的Matlab分类预测程序。该程序开箱即用,支持Excel格式数据集,兼容2018b及以上MATLAB版本,可实现二分类及多分类任务。代码包含详细中文注释,输出结果可视化程度高,含分类效果图、迭代优化曲线和混淆矩阵。程序附带测试数据集,特别适合机器学习初学者快速上手使用。所有功能无需修改代码,替换数据集即可直接运行,显著降低使用门槛。
2025-06-05 23:04:52
176
原创 [原创]HFOA-CNN-LSTM-Attention多特征分类预测 Matlab代码 (多输入单输出)
摘要:本文介绍了一种基于鱼鹰算法(HFOA)优化CNN-LSTM-Attention混合模型的Matlab多特征分类预测代码。该代码可直接替换Excel数据集运行,包含中文注释和质量验证。运行结果展示分类效果图、迭代优化图和混淆矩阵图。HFOA算法为2025年最新发表(附赠原文献),适用于2021b及以上MATLAB版本。代码特点包括多输入单输出、调试完成即用性,并提供测试数据集,适合科研人员及初学者使用。
2025-05-29 10:51:56
153
原创 [25年算法]基于鹰鱼优化算法优化XGBoost(HFOA-XGBoost)的数据多特征分类预测 (多输入单输出)
本文介绍了一个基于鹰鱼优化算法(HFOA)优化XGBoost的多特征分类预测MATLAB程序。该程序适用于Excel格式数据,采用交叉验证抑制过拟合。HFOA算法于2025年发表在SCI期刊Electronics上。程序要求MATLAB2018b及以上版本,包含中文注释、测试数据和多种可视化结果图(分类效果、迭代优化、混淆矩阵)。该方案适合科研人员直接使用,无需修改代码即可运行,特别适合新手快速实现多特征分类任务。
2025-05-29 10:50:58
188
原创 [25年算法]基于鹰鱼优化算法优化XGBoost(HFOA-XGBoost)的数据多变量回归预测 (多输入单输出)
【摘要】本文介绍了基于鹰鱼优化算法(HFOA)优化XGBoost的多变量回归预测Matlab程序。该程序适用于多输入单输出数据,采用Excel格式,已调试完成可直接使用。HFOA算法是2025年发表在SCI期刊的最新优化方法,程序包含交叉验证防止过拟合。运行环境需Matlab2018b及以上版本,提供R2、MAE等多种评价指标和可视化结果。代码含中文注释,附带测试数据集,方便用户直接替换数据使用,特别适合初学者快速上手应用。
2025-05-29 10:49:28
291
原创 基于CNN-BiGRU的锂电池剩余寿命预测 [电池容量提取+锂电池寿命预测]Matlab代码(单变量)
本文介绍了一个基于CNN-BiGRU混合模型的锂电池剩余寿命预测Matlab代码。该代码包含电池容量提取和寿命预测两个完整模块,使用NASA数据集(B0005训练/B0006测试),可直接运行。特点包括:1)支持单变量容量历史数据迭代预测;2)提供R2、MAE等多项评价指标;3)含中文注释和测试数据集;4)要求MATLAB 2018b及以上版本运行。代码操作简便,适合科研人员直接使用或作为学习参考。
2025-05-29 10:48:13
262
原创 基于CNN-GRU的锂电池剩余寿命预测 [电池容量提取+锂电池寿命预测]Matlab代码(单变量)
摘要:本文介绍了一个基于CNN-GRU混合模型的锂电池剩余寿命预测Matlab代码。该代码使用NASA B0005电池数据训练,B0006电池数据测试,包含完整的电池容量提取和寿命预测功能。代码采用单变量输入和迭代预测方法,提供R2、MAE、MSE等多种评价指标。特点包括:1) 中文注释清晰;2) 支持2018b以上Matlab版本;3) 附带测试数据集;4) 开箱即用,适合新手。运行结果展示电池容量提取和寿命预测的可视化效果,代码可直接应用于用户数据。
2025-05-29 10:46:19
162
原创 基于CNN-BiLSTM的锂电池剩余寿命预测 [电池容量提取+锂电池寿命预测]Matlab代码(单变量)
摘要:本文介绍了一套基于CNN-BiLSTM模型的锂电池剩余寿命预测MATLAB代码。代码采用NASA数据集(B0005训练/B0006测试),包含电池容量提取和寿命预测两大功能模块,支持单变量分析。代码特点包括:一键运行main函数、完整中文注释、多种评价指标(R2/MAE/MSE等)、丰富的可视化结果输出。运行环境要求MATLAB 2018b及以上版本,附带测试数据集,适合科研人员和初学者直接使用或二次开发。
2025-05-29 10:34:29
624
基于LSTM多变量时序预测免费(Matlab完整代码+数据)
2024-08-14
基于RF多变量时序预测(Matlab完整代码+数据)
2024-08-14
免费基于CNN多变量时序预测(Matlab完整代码+数据)
2024-08-14
基于RBF回归预测免费(Matlab完整代码+数据)
2024-08-14
基于PSO-SVM的数据回归预测(附带Matlab完整代码)
2024-08-09
基于PSO-SVM的数据分类预测(附带免费的Matlab完整代码)
2024-08-08
基于PSO-BP的数据分类预测(附带免费的Matlab完整代码)
2024-08-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人