基于SVM回归+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)

目录

1、代码简介

2、代码运行结果展示

3、代码获取


1、代码简介

(SVM+SHAP)基于支持向量机的数据多输入单输出+SHAP可解释性分析的回归预测模型

1、在机器学习和深度学习领域,模型复杂度的不断攀升使得决策过程的可解释性成为研究热点。模型如何做出决策、判断依据的合理性以及特征依赖状况等问题,都亟需科学的分析方法来解答。在此背景下,SHAP(SHapley Additive exPlanations)凭借其坚实的理论基础和强大的解释能力应运而生。​

2、SHAP 构建于博弈论中的 Shapley 值概念,能够为任意机器学习模型提供局部与全局的解释。其核心思想是将模型预测值分解为每个特征的贡献之和,通过计算特征加入模型时对预测结果的边际贡献,量化各特征对最终决策的影响程度。这种方法不仅能够揭示模型对单一样本的决策逻辑,还可以从整体层面分析模型对不同特征的依赖模式,识别出被过度依赖或忽略的关键特征。​

3、相较于传统机理模型受困于各种复杂力学方程,难以平衡预测精度与可解释性的局限,采用机器学习和与 SHAP 的混合建模框架,实现了预测性能与解释能力的有机统一。该框架在保障回归模型高精度预测的同时,利用 SHAP 的特征贡献分析能力,将模型的决策过程以直观且符合数学逻辑的方式呈现,为模型优化与决策支持提供了重要依据,有望在多领域复杂系统建模中发挥关键作用。

代码解释:

1.本程序数据采用FO工艺数据库,输入特征为:涵盖膜面积、进料流速、汲取液流速、进料浓度及汲取液浓度。

2.无需更改代码替换数据集即可运行!!!数据格式为excel!

3.需要其他算法优化的都可以定制!

注:

1️⃣、运行环境要求MATLAB版本为2023b及其以上【没有我赠送】

2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要

3️⃣、代码中文注释清晰,质量极高

4️⃣、赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白

2、代码运行结果展示

3、代码获取

点击下方了解更多!

### SHAP模型在MATLAB中的实现与应用 #### 1. 安装必要的工具箱和支持包 为了在MATLAB中使用SHAPShapley Additive Explanations),需要安装Statistics and Machine Learning Toolbox以及Deep Learning Toolbox。这些工具箱提供了构建和训练机器学习模型的功能,同时也支持部分解释性分析的方法。 对于更高级别的功能,比如直接调用Python库来辅助完成复杂的任务,可以考虑通过MATLAB Engine API for Python接口引入外部资源[^2]。 #### 2. 使用MATLAB内置函数初步探索数据集 利用`fitctree`, `fitcensemble` 或者其他分类器/回归器创建基础模型之后,可以通过诸如`predict`这样的命令来进行预测操作。此时虽然还没有涉及到具体的解释机制,但是理解输入输出之间的关系是后续工作的前提条件。 ```matlab % 假设X为特征矩阵,Y为目标变量向量 Mdl = fitctree(X, Y); % 构建决策树作为示例模型 Ypred = predict(Mdl,X); ``` #### 3. 应用SHAP值计算并可视化结果 目前MATLAB官方并未提供专门针对SHAP的内置函数,因此有两种主要途径: - **方案A**: 利用MATLAB自带的支持向量机(SVM)、随机森林(Random Forests)算法配合`lime`或`pdp`(Partial Dependence Plot)等功能间接获得类似的解释效果; - **方案B**: 更推荐的方式是从Python环境中借用shap库的力量,在MATLAB内部运行Python脚本以获取所需的SHAP值,并将其转换回MATLAB结构以便进一步处理和展示。 下面是一个简单的例子说明如何借助Python shap库执行此过程: ```matlab pyversion('path_to_your_python.exe'); % 设置使用的Python版本路径 addpath(genpath(fullfile(matlabroot,'extern','examples','eng_mat'))); model_path = 'your_model_file.mat'; % 存储好的ML/DL模型文件位置 data_path = 'your_dataset.csv'; % 数据源CSV文件的位置 % 加载预训练模型及测试数据... load(model_path); T = readtable(data_path); % 调用Python代码片段进行SHAP值计算 eval(['!python -c "import sys; import pandas as pd; from sklearn.externals import joblib;' 'from shap import Explainer, summary_plot; model=joblib.load(\'' ... matlab.internal.engine.evalString('fullfile(pwd,model_path)'),'\');' 'explainer = Explainer(model); shap_values = explainer(pd.read_csv(\'' ... matlab.internal.engine.evalString('fullfile(pwd,data_path)'), '\')); ' 'summary_plot(shap_values, pd.read_csv(\'' ... matlab.internal.engine.evalString('fullfile(pwd,data_path)'), '\')).savefig(\'shap_summary.png\')"']); imshow(imread('shap_summary.png')); title('Feature Importance via SHAP Values'); ``` 这段代码展示了怎样跨平台调用Python环境下的shap库来生成特征重要性的总结图,并最终返回给MATLAB显示出来。需要注意的是实际部署时应确保所有依赖项都已正确配置好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值