
机器学习
机器学习和优化算法
擅长机器学习,深度学习,优化算法结合和编写,可以做回归,分类,时序预测,信号分解,递归预测等内容,面包多、公众号、知乎、B站同名!需要可联系我定制! 从未和“前程算法屋”合作,谨防被骗!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[独家]基于贝叶斯算法-麻雀搜索算法-BP神经网络(Bayes-SSA-BP)的多特征分类预测 Matlab代码
本文介绍了一份基于贝叶斯算法-麻雀搜索算法-BP神经网络(Bayes-SSA-BP)的多特征分类预测Matlab代码。该代码通过双重优化:Bayes优化BP网络的隐藏层神经元个数和学习率,SSA优化BP的权值和阈值。程序已调试完成,支持替换Excel格式的数据集运行,并可根据需求更换优化算法。运行环境要求MATLAB 2018b及以上版本,代码包含中文注释,输出结果包括分类效果图、迭代优化图和混淆矩阵图等,并附带测试数据集。该资源适合新手直接使用。原创 2025-08-05 22:32:39 · 151 阅读 · 0 评论 -
[独家]基于贝叶斯算法-Adam梯度下降算法-BP神经网络(Bayes-AGDO-BP)的多特征分类预测Matlab代码
摘要:本文介绍了一种基于贝叶斯算法和Adam梯度下降优化BP神经网络的双重优化方法(Bayes-AGDO-BP),适用于多特征分类预测。该Matlab代码已调试完成,可直接替换Excel格式数据集运行。算法采用Bayes优化BP网络参数,AGDO优化权值和阈值,具有动态梯度交互等特性,2025年7月发表于Nature子刊。代码包含完整中文注释,支持2018b及以上MATLAB环境运行,可生成分类效果图、迭代优化图等多种可视化结果,并附带测试数据集,适合科研人员直接使用。原创 2025-08-05 22:31:09 · 453 阅读 · 0 评论 -
[独家]基于贝叶斯算法-冠豪猪算法-BP神经网络(Bayes-CPO-BP)的多变量回归预测 Matlab代码
【摘要】本文介绍了一种基于贝叶斯算法-冠豪猪算法-BP神经网络(Bayes-CPO-BP)的多变量回归预测Matlab代码。该创新方法采用Bayes优化BP神经网络参数,并结合2024年最新提出的冠豪猪优化器(CPO)进行双重优化。代码已调试完成,支持Excel数据格式,可直接替换数据集使用。CPO算法作为新型优化器,具有优异性能,已在SCI一区期刊发表。程序提供R2、MAE等多项评价指标,附带完整测试数据集,适合不同层次用户使用。运行环境要求MATLAB 2018b及以上版本,代码注释清晰,支持其他优化算原创 2025-08-05 22:27:35 · 219 阅读 · 0 评论 -
[独家]基于贝叶斯算法-麻雀搜索算法-BP神经网络(Bayes-SSA-BP)的多变量回归预测 Matlab代码
本文介绍了一种基于贝叶斯算法和麻雀搜索算法双重优化的BP神经网络多变量回归预测Matlab代码(Bayes-SSA-BP)。该代码通过Bayes优化隐藏层神经元个数和学习率,SSA优化权值和阈值,实现双重优化效果。程序已调试完善,可直接替换Excel格式数据集运行,支持更换其他优化算法。运行要求MATLAB 2018b及以上版本,提供R2、MAE、MSE等多种评价指标和丰富可视化结果。代码包含清晰中文注释,附带测试数据集,适合新手使用。原创 2025-08-05 22:26:39 · 239 阅读 · 0 评论 -
[独家]基于贝叶斯算法-Adam梯度下降算法-BP神经网络(Bayes-AGDO-BP)的多变量回归预测Matlab代码
摘要:本文介绍了一种基于贝叶斯算法和Adam梯度下降算法优化的BP神经网络(Bayes-AGDO-BP)多变量回归预测Matlab代码。该代码采用双重优化策略,通过Bayes优化隐藏层参数,AGDO优化权值和阈值。程序已调试完善,支持Excel数据格式,可直接运行。AGDO算法受Adam优化器启发,具有动态梯度交互特性。代码适用于MATLAB 2018b及以上版本,提供R2、MAE等评价指标和丰富可视化结果,含中文注释和测试数据集。该研究成果已发表于JCR1区SCI期刊。原创 2025-08-05 22:25:36 · 322 阅读 · 0 评论 -
Matlab 基于牛顿拉夫逊算法优化极限学习机-Adaboost(NRBO-ELM-Adaboost)分类预测
本文介绍了一个基于牛顿拉夫逊优化算法(NRBO)改进的极限学习机-Adaboost分类预测程序。该程序采用MATLAB实现,适用于二分类和多分类任务,具有以下特点:1) 采用Newton-Raphson搜索规则和陷阱避免算子优化算法;2) 提供完整的分类效果图、迭代优化图和混淆矩阵展示;3) 支持Excel格式数据集,开箱即用;4) 需要MATLAB 2018b及以上版本运行环境。程序代码注释清晰,附带测试数据集,适合初学者使用。该算法成果已发表于中科院2区SCI期刊。原创 2025-07-31 23:05:47 · 289 阅读 · 0 评论 -
[双适应度]Matlab 基于粒子算法优化BP神经网络-Adaboost(PSO-BP-Adaboost)分类预测 (加交叉验证)
摘要:该文介绍了一个基于PSO算法优化BP神经网络-Adaboost的分类预测MATLAB程序,支持二分类和多分类任务。程序特点包括:1)内置五折交叉验证(可调1-10折),有效抑制过拟合;2)PSO算法可替换为其他优化算法;3)兼容Excel数据格式,开箱即用;4)提供分类效果图、优化曲线和混淆矩阵等可视化结果。程序适用于MATLAB 2018b及以上版本,附带测试数据集和中文注释,特别适合初学者使用。原创 2025-07-31 12:49:52 · 269 阅读 · 0 评论 -
Matlab 基于极限学习机结合Bagging(ELM-Bagging)集成算法的多变量回归预测 (多输入单输出)
摘要:本文介绍了一个基于Matlab的极限学习机结合Bagging集成算法(ELM-Bagging)的多变量回归预测程序。该程序采用ELM作为弱学习器,通过Bagging进行集成,适用于多输入单输出的回归预测任务。程序已调试完成,可直接替换Excel格式的数据集使用。运行环境要求MATLAB 2018b及以上版本,提供R2、MAE、MAPE等多项评价指标,并包含大量可视化结果。代码具有清晰的中文注释,附带测试数据集,适合新手直接使用。文末提供代码获取方式。原创 2025-07-30 23:09:34 · 281 阅读 · 0 评论 -
Matlab 基于极限学习机结合Bagging(ELM-Bagging)集成算法的多变量分类预测 (多输入单输出)
摘要:Matlab基于极限学习机(ELM)和Bagging集成算法实现多变量分类预测,支持多输入单输出模式。该程序可直接运行Excel格式数据集,适用于二分类和多分类任务,要求MATLAB 2018b及以上版本。代码包含详细中文注释,运行结果可视化展示分类效果、迭代优化过程和混淆矩阵。程序已调试完毕,用户只需替换数据集即可使用,并附赠测试数据集方便新手快速上手。原创 2025-07-30 23:08:47 · 280 阅读 · 0 评论 -
Matlab 基于遗传算法优化核极限学习机-Adaboost(GA-KELM-Adaboost)分类预测 (加交叉验证)
【摘要】本文介绍了一个基于遗传算法优化核极限学习机-Adaboost(GA-KELM-Adaboost)的MATLAB分类预测程序。该程序支持二分类和多分类任务,具有交叉验证功能(1-10折可调),能有效抑制过拟合。代码已调试完成,用户只需替换Excel格式数据集即可使用。程序特点包括:中文注释清晰、运行环境要求MATLAB 2018b及以上版本、提供分类效果图/迭代优化图/混淆矩阵图等可视化结果,并附带测试数据集。支持定制其他优化算法替换遗传算法。原创 2025-07-30 23:07:45 · 221 阅读 · 0 评论 -
[25年7月算法]基于Adam梯度下降优化算法优化极限学习机(AGDO-ELM)的数据回归预测 Matlab代码
本文介绍了一个基于Adam梯度下降优化算法(AGDO)改进的极限学习机(ELM)回归预测Matlab程序。该程序可直接替换Excel数据集运行,无需修改代码,包含R2、MAE等多项评价指标。AGDO算法通过梯度动量积分等机制优化搜索过程,相关成果已发表于Nature子刊。程序兼容MATLAB 2018b及以上版本,提供中文注释和测试数据集,适合科研人员直接使用或进行算法替换定制。文末附有代码获取方式。原创 2025-07-30 23:06:19 · 487 阅读 · 0 评论 -
Matlab 基于极限学习机结合Bagging(ELM-Bagging)集成算法的多变量时序预测 (多输入单输出)
【摘要】本文介绍了一个基于MATLAB的ELM-Bagging集成算法多变量时序预测程序。该程序采用极限学习机(ELM)作为弱学习器,通过Bagging方法进行集成,可实现多输入单输出的时序预测。程序支持Excel格式数据,适用于MATLAB 2018b及以上版本,提供R2、MAE、MAPE等多种评价指标,并包含详细中文注释和测试数据集,方便用户直接替换数据使用。程序已调试完成,无需修改代码即可运行,特别适合初学者使用。原创 2025-07-30 12:57:44 · 202 阅读 · 0 评论 -
Matlab【独家原创】基于逻辑回归(LR)+SHAP可解释性分析的回归预测 (多输入单输出)
摘要:本文介绍了一个基于逻辑回归和SHAP可解释性分析的回归预测模型。该模型采用FO工艺数据库数据,输入特征包括膜面积、流速、浓度等多参数,实现多输入单输出预测。模型结合机器学习预测精度与SHAP解释能力,通过Shapley值量化特征贡献,提供直观的决策解释。代码支持MATLAB 2018b及以上版本,包含R2、MAE等评价指标,附带测试数据集和详细中文注释,适合新手直接使用。原创 2025-07-29 22:40:24 · 338 阅读 · 0 评论 -
Matlab 基于遗传算法优化BP神经网络-Adaboost(GA-BP-Adaboost)分类预测 (加交叉验证)
摘要:该程序实现了基于遗传算法优化BP神经网络结合Adaboost的分类预测模型,支持二分类和多分类任务。核心特点包括:1)内置5折交叉验证抑制过拟合;2)可替换其他优化算法;3)支持Excel格式数据输入;4)提供完整可视化结果(分类效果图、迭代优化图、混淆矩阵)。程序已调试完成,兼容MATLAB 2018b及以上版本,附带测试数据集和详细中文注释,适合直接使用或作为学习参考。用户可灵活调整交叉验证折数(1-10折),并支持算法定制服务。原创 2025-07-24 23:47:47 · 266 阅读 · 0 评论 -
[独家原创]LSSVM 4 种核函数回归预测一键对比 Matlab代码 (多输入单输出)
【摘要】本资源提供一款原创Matlab代码,实现LSSVM(最小二乘支持向量机)4种核函数(RBF、线性、MLP、多项式)回归预测的一键对比功能。代码支持多输入单输出,仅需运行main程序即可完成所有操作,无需修改即可替换Excel数据集使用。运行环境要求Matlab 2018b及以上版本,代码包含详细中文注释,输出结果包括分类效果图和混淆矩阵等可视化图表。配套提供测试数据集,适合机器学习初学者直接使用。原创 2025-07-24 22:32:55 · 302 阅读 · 0 评论 -
[原创]基于卷积神经网络-支持向量机-Adaboost(CNN-SVM-Adaboost)多特征分类预测
摘要:本文介绍了一个基于CNN-SVM-Adaboost的多特征分类预测Matlab程序。该程序将CNN-SVM作为弱学习器,通过Adaboost算法进行集成学习,可实现二分类和多分类任务。程序已调试完成,支持Excel格式数据输入,要求Matlab 2020b及以上版本运行环境。代码包含中文注释,运行结果展示分类效果图、迭代优化图和混淆矩阵图。测试数据集已随程序提供,适合初学者直接使用。程序无需修改即可运行,用户只需替换数据集即可应用。原创 2025-07-22 22:08:52 · 455 阅读 · 0 评论 -
基于LSSVM-Adaboost回归 最小二乘向量机结合Adaboost多变量回归预测 Matlab代码(多输入单输出)
本文介绍了一个基于MATLAB的CNN-SVM-Adaboost多特征分类预测模型。该模型采用卷积神经网络-支持向量机作为弱学习器,通过Adaboost算法进行集成学习。程序已调试验证,可直接替换Excel格式数据集运行,支持二分类和多分类任务。运行环境要求MATLAB 2020b及以上版本,代码包含详细中文注释。输出结果包括分类效果图、迭代优化图和混淆矩阵图,并附赠测试数据集供初学者使用。该方案适合机器学习新手快速实现多特征分类预测任务。原创 2025-07-22 22:07:39 · 166 阅读 · 0 评论 -
【原创】基于GA-SVM+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
本文介绍了一种基于遗传算法优化支持向量机(GA-SVM)结合SHAP可解释性分析的数据回归预测模型。该模型针对多输入单输出的预测问题,在保证预测精度的同时,利用SHAP方法提供决策过程的数学解释。代码采用MATLAB 2020b以上版本开发,支持Excel格式数据输入,包含R2、MAE等多项评价指标,适用于膜工艺等领域的回归预测任务。模型通过SHAP值分析特征贡献度,实现了预测性能与解释能力的平衡。程序附带测试数据集,注释清晰,便于直接替换数据使用。原创 2025-07-15 23:03:10 · 360 阅读 · 0 评论 -
[原创]基于CNN-CPO-LSSVM-Adaboost的数据多特征分类预测(多输入单输出)
摘要: Matlab基于CNN-CPO-LSSVM-Adaboost的多特征分类预测模型,采用冠豪猪优化算法改进最小二乘向量机作为弱学习器,并通过Adaboost集成提升性能。该模型支持二分类和多分类任务,数据格式为Excel,程序已调试完成可直接运行。冠豪猪优化器(CPO)为2024年发表的最新成果。运行环境要求MATLAB 2020b及以上版本,代码包含中文注释,输出结果包含分类效果图、优化迭代图和混淆矩阵。模型适用于新手,并提供测试数据集。原创 2025-07-14 23:33:04 · 704 阅读 · 0 评论 -
【原创】基于Bayes-SVM+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
摘要:本文介绍了一种基于贝叶斯算法优化支持向量机(SVM)并结合SHAP可解释性分析的数据回归预测模型。该模型采用多输入单输出架构,适用于FO工艺数据库分析,输入特征包括膜面积、流速等5个参数。代码基于MATLAB 2020b开发,提供R2、MAE等多项评价指标和可视化结果。项目亮点在于将机器学习预测性能与SHAP可解释性分析相结合,通过博弈论中的Shapley值量化特征贡献,实现了高精度预测与决策过程透明化的统一。代码附带测试数据集,中文注释清晰,可直接替换用户数据使用。原创 2025-07-13 23:34:44 · 336 阅读 · 0 评论 -
Matlab 基于SSA-BP+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:该代码基于SSA-BP神经网络和NSGAII多目标优化算法,适用于工艺参数优化等领域。通过建立5输入4输出的代理模型,实现多目标优化(y1极大,y2-y4极小),输出Pareto解集。代码包含两个主程序(先SSA-BP回归后NSGAII优化),提供4种输出图表及5种评价指标。MATLAB2018b以上版本运行,中文注释清晰,附测试数据集。原创 2025-07-10 23:03:46 · 401 阅读 · 0 评论 -
Matlab 基于SSA-BP+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:该代码基于SSA-BP和NSGAII算法实现多目标优化,适用于工艺参数优化。通过SSA-BP建立5输入3输出的代理模型,再用NSGAII寻找Pareto最优解。代码包含两个主程序,先进行回归建模后优化,输出多种评价指标和可视化结果。MATLAB 2018b及以上版本可运行,附带测试数据集和详细中文注释,适合新手使用。代码质量高,可直接替换数据应用于实际场景。原创 2025-07-10 23:02:40 · 259 阅读 · 0 评论 -
Matlab 基于HKELM+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一种基于HKELM混合核极限学习机和NSGAII多目标优化算法的代码方案,适用于工艺参数优化。该方案先通过HKELM构建5输入3输出的代理模型,再用NSGAII算法寻找最优解集。代码包含两个主程序,分别实现HKELM回归和NSGAII优化,并提供丰富的结果可视化图表(预测拟合图、误差分析图等)和评价指标(R2、MAE等)。代码要求MATLAB 2018b及以上版本,中文注释清晰,附带测试数据集,适合新手直接使用。原创 2025-07-10 23:01:45 · 272 阅读 · 0 评论 -
Matlab 基于HKELM+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:本文介绍了一种基于混合核极限学习机(HKELM)和NSGAII多目标优化算法的MATLAB代码方案,适用于工艺参数优化等领域。该方案包含两个主程序:先通过HKELM建立5输入4输出的代理模型,再用NSGAII算法寻找极值并生成Pareto解集。代码提供完整测试数据集,包含R2、MAE等多种评价指标和丰富的可视化结果,中文注释清晰,支持MATLAB 2018b及以上版本运行,特别适合新手使用。代码获取方式见文末。原创 2025-07-10 23:00:16 · 250 阅读 · 0 评论 -
[区间概率预测]PSO-RF-ABKDE多变量回归预测 基于改进自适应核密度估计实现区间概率预测
《基于PSO-RF-ABKDE的多变量回归预测系统》 本系统创新性地融合粒子群优化算法(PSO)、随机森林(RF)和自适应带宽核密度估计(ABKDE),实现高精度多变量回归预测。其核心优势在于: 预测功能全面:同时提供点预测、概率预测和核密度估计 性能优越:通过PSO优化RF超参数,ABKDE实现精准区间预测 使用便捷:支持Excel数据直接导入,无需修改代码 结果丰富:输出R2、MAE等6项评估指标,置信区间可调 扩展灵活:可付费定制替换预测模型,支持单/多变量时序预测转换 系统附带完整数据集和中文注释代原创 2025-07-10 22:06:50 · 189 阅读 · 0 评论 -
[区间概率预测]BP-ABKDE多变量回归预测 基于改进自适应核密度估计实现区间概率预测
《BP-ABKDE多变量回归预测模型》 摘要:本文介绍了一种基于BP神经网络与改进自适应核密度估计(ABKDE)的多变量回归预测方法。该模型可实现点预测和区间概率预测,输出包括R2、MAE等常规指标及区间覆盖率(PICP)、平均宽度百分比(PINAW)等创新指标。程序已调试完成,支持Excel数据格式,可直接替换数据使用。BP核心可定制替换为其他算法,置信区间可调,适用于不确定性分析需求。代码附带完整数据集、中文注释和运行示例,质量可靠,开箱即用。该方案通过核密度估计技术增强预测结果的可解释性,特别适合需要原创 2025-07-10 22:03:48 · 302 阅读 · 0 评论 -
【双适应度】基于GA-SVM的数据多输入单输出回归(多输入单输出) Matlab代码
《基于遗传算法优化支持向量机的回归预测MATLAB代码》 摘要:本文介绍了一套调试完成的GA-SVM数据回归预测MATLAB程序,适用于多输入单输出场景。代码具有以下特点:1) 采用Excel数据格式,替换数据集即可直接运行;2) 要求MATLAB 2018b及以上版本;3) 提供R2、MAE等多种评价指标和丰富可视化结果;4) 包含中文注释和测试数据集,适合新手使用。该解决方案通过遗传算法优化SVM参数,实现了高效的回归预测功能,用户仅需简单替换数据即可应用于实际场景。原创 2025-07-10 21:37:27 · 313 阅读 · 0 评论 -
【原创】基于Bayes-SVM+SHAP可解释性分析的分类预测 Matlab代码(多输入单输出)
《基于贝叶斯优化的SVR-SHAP混合预测模型》摘要 本文介绍了一种结合贝叶斯优化支持向量机(SVR)与SHAP可解释性分析的数据预测模型。该模型采用MATLAB实现,适用于多输入单输出的分类预测任务。通过贝叶斯算法优化SVR超参数,在保证预测精度的同时,利用SHAP方法提供模型决策过程的数学解释,实现了预测性能与可解释性的统一。代码包含完整的分类效果图、优化过程图和混淆矩阵等可视化结果,支持直接替换Excel数据集运行。特别适合需要模型可解释性的应用场景,为机器学习模型的黑箱问题提供了有效解决方案。原创 2025-07-09 23:25:48 · 453 阅读 · 0 评论 -
Matlab【独家原创】基于RF+SHAP可解释性分析的分类预测 (多输入单输出)
《基于随机森林与SHAP的可解释分类预测模型》 摘要:本文介绍了一种结合随机森林(RF)和SHAP可解释性分析的数据分类预测模型。针对RF模型使用SHAP分析速度慢的问题,程序提供了两种计算版本(常规版和提速版),并附带详细使用说明。该解决方案具有以下特点:(1)支持多输入单输出数据格式;(2)实现二分类和多分类任务;(3)提供分类效果图、优化迭代图和混淆矩阵等可视化结果;(4)兼容MATLAB 2018b及以上版本,代码注释清晰;(5)附带测试数据集,开箱即用。该方法通过SHAP量化特征贡献,有效平衡了预原创 2025-07-08 23:38:24 · 260 阅读 · 0 评论 -
Matlab【独家原创】基于LSSVM+SHAP可解释性分析的分类预测 (多输入单输出)
摘要:本文介绍了一种基于LSSVM(最小二乘向量机)结合SHAP可解释性分析的数据分类预测模型。该程序提供两种SHAP计算版本(标准版和提速版),并附详细使用说明。代码采用MATLAB编写(2018b及以上版本),支持多分类任务,包含完整中文注释和测试数据集。运行结果可视化包括分类效果图、迭代优化图和混淆矩阵。该模型将机器学习预测能力与SHAP可解释性分析相结合,既保证预测精度又提供决策依据,特别适合需要模型解释的应用场景。代码开箱即用,支持定制优化。原创 2025-07-08 22:51:20 · 495 阅读 · 0 评论 -
Matlab【独家原创】基于KELM+SHAP可解释性分析的分类预测 (多输入单输出)
摘要:本文介绍了一种基于核极限学习机(KELM)和SHAP可解释性分析的数据分类预测模型。该模型结合机器学习与SHAP解释方法,实现了高精度预测与决策过程透明化的统一。代码采用MATLAB编写(2018b+版本),支持二分类和多分类任务,包含中文注释和测试数据集。运行结果展示分类效果图、优化迭代图和混淆矩阵等可视化内容。该方案适用于多输入单输出的数据分析场景,无需修改代码即可替换数据集运行,同时提供定制化算法优化服务。原创 2025-07-08 22:50:25 · 411 阅读 · 0 评论 -
基于RBF+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
摘要:本文介绍了一种基于径向基神经网络(RBF)结合SHAP可解释性分析的数据回归预测模型。该模型采用多输入单输出结构,适用于FO工艺数据库分析,输入特征包括膜面积、流速、浓度等参数。代码基于MATLAB 2018b及以上版本开发,提供R2、MAE、MSE等多种评价指标,并生成可视化分析结果。模型特色在于通过SHAP方法实现预测结果的可解释性分析,量化各特征对预测的贡献度。代码附带测试数据集,中文注释完善,可直接替换用户数据使用,适合机器学习初学者。完整代码可通过文末链接获取。原创 2025-07-08 22:49:13 · 415 阅读 · 0 评论 -
【原创】基于RF+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
摘要:本文介绍了一种基于随机森林(RF)和SHAP可解释性分析的回归预测模型。该模型采用多输入单输出架构,通过SHAP方法量化特征贡献,实现高精度预测与决策过程可视化。代码采用MATLAB编写,适用于FO工艺数据(包含膜面积、流速等特征),提供R2、MAE等多项评估指标和可视化结果。程序兼容Excel格式数据,含中文注释和测试数据集,适合2018b及以上MATLAB版本运行。该方法突破了传统机理模型的局限性,为复杂系统建模提供了预测与解释并重的解决方案。原创 2025-07-07 23:43:00 · 378 阅读 · 0 评论 -
Matlab【独家原创】基于GRNN+SHAP可解释性分析的分类预测 (多输入单输出)
摘要:本文介绍基于GRNN神经网络结合SHAP可解释性分析的数据预测模型。该模型采用MATLAB实现,支持多输入单输出分类预测,包含两种SHAP计算版本(常规版和提速版)。代码具有以下特点:1) 即插即用,支持Excel数据格式;2) 提供完整的可视化结果(分类效果图、迭代曲线、混淆矩阵);3) 适用于二分类和多分类任务;4) 包含详细中文注释和测试数据集。该方法将机器学习预测能力与SHAP解释性分析相结合,为模型决策提供直观解释,特别适合需要模型可解释性的应用场景。原创 2025-07-04 23:50:26 · 321 阅读 · 0 评论 -
Matlab【独家原创】基于ELM+SHAP可解释性分析的分类预测 (多输入单输出)
摘要:基于极限学习机(ELM)和SHAP可解释性分析的数据分类预测模型,采用MATLAB实现,支持多输入单输出的二分类/多分类任务。该模型通过SHAP方法量化特征贡献,兼具预测精度与可解释性,适用于复杂系统建模。代码提供完整分类效果图、迭代优化图和混淆矩阵,含中文注释和测试数据集,支持MATLAB 2018b及以上版本运行,可直接替换数据使用。原创 2025-07-04 23:48:17 · 278 阅读 · 0 评论 -
Matlab【独家原创】基于SVM+SHAP可解释性分析的分类预测 (多输入单输出)
摘要:本文介绍了一个基于支持向量机(SVM)和SHAP可解释性分析的分类预测模型。该模型采用机器学习与SHAP的混合框架,兼顾预测精度与可解释性,通过SHAP方法量化各特征对决策的贡献度。代码支持MATLAB 2018b及以上版本,可实现二分类和多分类任务,包含分类效果图、优化迭代图等可视化结果。模型无需修改即可替换数据集运行,适合机器学习初学者使用。文末提供了代码获取方式。原创 2025-07-04 23:46:25 · 370 阅读 · 0 评论 -
Matlab【独家原创】基于RBF+SHAP可解释性分析的分类预测 (多输入单输出)
摘要:本文介绍了一个基于RBF神经网络结合SHAP可解释性分析的数据分类预测模型。针对RBF使用SHAP分析速度慢的问题,程序提供了两种计算版本(常规版和提速版)。该模型适用于多输入单输出的分类任务,MATLAB2018b及以上版本可运行,支持二分类和多分类。代码包含完整中文注释,运行结果可视化包括分类效果图、优化迭代图和混淆矩阵。程序附带测试数据集,用户只需替换Excel格式数据即可直接使用,无需修改代码。该方案将机器学习预测性能与SHAP解释能力相结合,为模型决策过程提供直观分析。原创 2025-07-04 23:45:21 · 304 阅读 · 0 评论 -
Matlab【独家原创】基于BP+SHAP可解释性分析的分类预测 (多输入单输出)
《基于BP神经网络和SHAP可解释性分析的分类预测模型》摘要:该模型结合BP神经网络和SHAP可解释性分析,实现数据多输入单输出分类预测。程序包含两种SHAP计算版本(正常版和提速版),并附详细使用说明。代码采用MATLAB编写(2018b及以上版本),支持二分类和多分类任务,提供分类效果图、迭代优化图和混淆矩阵等可视化结果。模型兼顾预测精度与可解释性,通过SHAP值量化特征贡献,适用于复杂系统建模。程序附带测试数据集,开箱即用,适合机器学习初学者。(150字)原创 2025-07-04 12:37:54 · 363 阅读 · 0 评论 -
[区间概率预测]GBDT-ABKDE多变量回归预测 基于改进自适应核密度估计实现区间概率预测
【GBDT-ABKDE多变量区间概率预测】该程序实现基于梯度提升决策树(GBDT)和改进自适应核密度估计(ABKDE)的多变量回归预测,支持点预测和概率区间预测。特点包括:1)即用型代码,支持Excel数据直接替换;2)可定制更换预测模型;3)提供R2、MAE等指标及区间覆盖率(PICP)、宽度百分比(PINAW)评估;4)含中文注释和测试数据集。创新性地通过核密度估计量化预测不确定性,输出结果包含置信区间和概率分布。原创 2025-07-03 23:27:55 · 166 阅读 · 0 评论 -
Matlab 基于BP神经网络结合Bagging(BP-Bagging)集成算法的单变量时序预测 (单输入单输出)
《BP-Bagging神经网络多变量时序预测Matlab代码》 摘要:本文介绍了一套基于BP神经网络与Bagging集成算法的多变量时序预测Matlab代码解决方案。该代码采用单输入单输出架构,将BP作为弱学习器并通过Bagging进行集成优化。程序已调试完成,用户只需替换Excel格式数据集即可直接运行。代码要求Matlab 2018b及以上版本运行环境,提供R2、MAE、MAPE等多项评价指标,并生成丰富的可视化结果图。特别包含中文注释说明和测试数据集,尤其适合初学者使用。代码质量可靠,操作简便,可实现原创 2025-07-03 23:26:53 · 133 阅读 · 0 评论