mahout版本:0.9
hadoop版本:2.3.0
基于决策树步骤如下:
1.基于已有数据形成描述文件
2.训练建树
3.分类预测
数据集:
http://nsl.cs.unb.ca/NSL-KDD/
下载KDDTrain+.TXT和KDDTest+.TXT
具体的应用步骤:
1.上传数据到hdfs上:
hadoop put *.TXT /user/test/df/input/
2.描述文件生成:
hadoop jar your.jar org.apache.mahout.driver.MahoutDriver org.apache.mahout.classifier.df.tools.Describe -p /user/test/input/KDDTrain+.TXT -f /user/test/input/data.info -d N 3 C 2 N C 4 N C 8 N 2 C 19 N L N
3.训练建树:
hadoop jar your.jar org.apache.mahout.driver.MahoutDriver org.apache.mahout.classifier.df.mapreduce.BuildForest \
--data /user/test/input/KDDTrain+.TXT \
--dataset /user/test/input/data.info \
--partial \
--nbtrees 200 \
--output /user/test//output/ \
--no-complete \
4.分类预测:
hadoop jar your.jar org.apache.mahout.driver.MahoutDriver org.apache.mahout.classifier.df.mapreduce.TestForest \
--input /user/test/input/KDDTest+.TXT \
--dataset /user/test/input/data.info \
--model /user/test/output/forest.seq \
--analyze \
--mapreduce \
--output /user/test/predictions/ \
5.可以查看打印出决策树:
hadoop jar your.jar org.apache.mahout.driver.MahoutDriver org.apache.mahout.classifier.df.tools.ForestVisualizer \
--dataset /user/test/input/data.info \
--model /user/test/output/forest.seq \