Pyspark使用报错总结

在使用PySpark的UDF时,遇到了两个主要问题。一是不能直接在UDF内部使用另一个UDF,会导致TypeError,解决办法是通过join和过滤条件进行操作。二是当struct类型的map作为key无法转换为dict的key,由于Python字典要求key必须是可哈希的。尝试将map的key转换为str或展开处理,但遇到困难。PySpark UDF的调试具有挑战性,需要花费较长时间运行并查找错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

udf使用:

问题:

不能传入一个df,udf中使用另一个udf,这将抛出一个错误TypeError: cannot pickle '_thread.RLockobject

解决:

使用join的大于小于过滤条件

df1.join(df2, on=[(df2.timestamp > df1.start) & (df2.timestamp < df1.end)]) \ .groupby('start', 'end', 'event_name') \ .agg(F.mean('measurement').alias('avg')) \ .show()

问题:

pysaprk struct类型作为key的map不能转成dict的key

python对key进行哈希函数运算,根据计算的结果决定value的存储地址,所以字典是无序存储的,且key必须是可哈希的。可哈希表示key必须是不可变类型,如:数字、字符串、元组。

字典(dictionary)是除列表意外python之中最灵活的内置数据结构类型。列表是有序的对象结合,字典是无序的对象集合。两者之间的区别在于:字典当中的元素是通过键来存取的,而不是通过偏移存取。

PickleException: expected zero arguments for construction of ClassDict  for pyspark.sql.dtypes._create_row

貌似是由于返回值中包含了numpy.dtype,但是我没有使用,不知道为啥报错。好像是因为类型是map?

解决:

转换成str类型在进行处理或者explore展开处理

from pyspark.sql import Row
>>> eDF = spark.createDataFrame([Row(a=1, intlist=[1,2,3], mapfield={"a": "b"})])
>>> eDF.select(explode(eDF.intlist).alias("anInt")).collect()
[Row(anInt=1), Row(anInt=2), Row(anInt=3)]
>>> eDF.select(explode(eDF.mapfield).alias("key", "value")).show()
+---+-----+
|key|value|
+---+-----+
|  a|    b|
+---+-----+

处理未成功:将map的key转换成str作为新字典的key,总是报字典的key_error。更改了生成的map_key。好像是没有获取到相应的key的问题。。。

UDF实在是太难调试了,跑一遍要好久,看不出错在哪。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值